

Parallelizing Count-Min Sketch Algorithm on
Multi-core Processors

BOWEN Yu1, YU Zhang2,* and LUBING Li1
College of Computer and Control Engineering, Nankai University, China

1{bowenyu, lubinli}@mail.nankai.edu.cn
2zhangyu1981@nankai.edu.cn

Keywords: Count-Min sketch, Parallel algorithms, Frequent items.

Abstract. In this paper, we present a novel method that exploits the great parallel capability of
multi-cores to speed up the famous Count-Min sketch algorithm. The proposed parallel Count-Min
sketch algorithm equally distributes the input data stream into sub-threads which use the original
Count-Min sketch algorithm to process the sub-streams. The counters in each local Count-Min sketch
with frequency increments exceeding a pre-defined threshold are sent to a merging thread which is
able to return the estimated frequencies satisfying the (ε, δ)-approximation requirement. Experiments
with real traffic traces demonstrate the excellent performance as well as the effects of parameters. The
parallel Count-Min sketch algorithm achieves near-linear speedup at the cost of greater memory use.

Introduction
Sketch-based algorithms [1] have been commonly used in high-speed network traffic monitoring

and measurement applications, such as heavy-hitter identification [2], DoS and port scan detection [3],
network change detection [4], and network-wide traffic anomaly detection [5]. In this paper, we focus
on the well-known Count-Min (CM) sketch algorithm [6] which has proved to be a versatile summary
for frequency-based properties of a stream that can be used for answering a variety of queries on the
input stream, including point and range queries, quantiles, and heavy hitters, among others. However,
as the network bandwidth grows exponentially [7], the ever-increasing volume of network traffic
calls for a much higher per-packet processing speed. In the CM sketch, an update requires several
hash calculations and memory accesses, and these operations must be performed for every packet. In
practice, the per-packet processing on backbone links needs to be accomplished within time scales of
a few nanoseconds. In this paper, we propose a simple method to parallelize the CM sketch algorithm
on a commodity multi-core machine.

Problem Definition

We model the data stream S = (p1,p2,...,pt,...), where pt = (v,cv,t), v ∈ U (U = {1...k}, k is a positive
integer) is the item name, t is the timestamp, cv,t > 0 is the weight of the item. We assume the items are
ordered by timestamp. In the rest of the paper, we drop reference to t when we are interested only in
the “current” values of frequencies. To process a stream in parallel, this paper uses the independent
per-hardware-thread data structures. Suppose there are m+1 hardware threads in the multi-core
processor. The stream S is equally partitioned into m sub-streams S1,S2,...,Sm. Each sub-stream Si
consists of a sequence of tuples (v,ci,v,t) ordered by timestamp t, where 1 ≤ i ≤ m is the ID of the
sub-stream, v ∈U is the item name, ci,v,t > 0 is the weight of the item. Each hardware thread i (1 ≤ i ≤
m) processes Si and maintains a local CM sketch Di. The hardware thread m+1 maintains one global
CM sketch D which is produced from D1,...,Dm. The objective is for D to continuously guarantee that
with probability at least 1 δ− , ˆ

v v vf f f Nε≤ ≤ + , where fv is the true frequency of item v, is the
estimated frequency of item v given by D, N is the total frequencies of all items in S, 0ε > is the
user-specified error bound, and δ > 0 is the user-specified probability of failure.

6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer (MMEBC 2016)

© 2016. The authors - Published by Atlantis Press 2342

Parallel Count-Min sketch algorithm
In this section, we show how to effectively parallelize the CM sketch algorithm. The basic idea is

to simulate sequential execution and run multiple copies of CM sketches in different hardware
threads. Each hardware thread has its own independent CM sketch for storing the frequencies of items.
If there are m hardware threads simultaneously running, then there are m different CM sketches.
According to whether merging the CM sketches is required for answering the queries, the schemes
are classified into two categories. In the first hash-based partitioning, the same items go to the same
threads, thus there is no need for merging. However, in the real world the distributions of data streams
are usually skewed, thus the threads processing the frequent items will be overloaded, while others
will be lightly loaded. Therefore it suffers from problems in load balancing. In the second
block-based partitioning (considered in this paper), the same items might go to different threads. In
this case, merging the CM sketches is required for answering queries. One simple way is to
periodically (e.g., every other second) merge the CM sketches into a global one. However,
periodically merging can’t provide continuous query answers. This is because that only at the time of
merging, the accuracy of returned answers can be guaranteed. Moreover, the merging overhead is
dependent on the merging frequency, greater the merging frequency and higher is the overhead. Here
we propose a novel merging method which is not only capable of providing continuous answers, but
also exhibits very low merge overhead, therefore achieves much higher processing throughput.

Fig. 1. Overview architecture of parallel CM sketches

The overview architecture is shown in Fig. 1. The system consists of m+1 hardware threads
(including the merging thread). Each sub-thread i (1 ≤ i ≤ m) observes a continuous sub-stream of
updates and communicates with the merging thread under certain condition to ensure the accuracy of
estimated frequencies. All sub-threads run the same original CM sketch algorithm and each maintains
a CM sketch locally, i.e., an (α, δ)-CM sketch (a 2-d array with ln(1)δ rows and e α columns)
and a set of pair-wise independent hash function h1,...,hd. It is important to note that all CM sketches
share the same set of hash functions. The merging thread maintains a global CM sketch with same
size of sub-threads. Precisely, the protocol of parallelizing the (ε, δ)-CM sketch algorithm can be
described as follows.

First, each sub-thread i (1 ≤ i ≤ m) maintains an (α, δ)-CM sketch Di (with the same set of pairwise
independent hash function h1,...,hd) for the items in sub-stream Si and a 2-d array ∆i with the same
size. Di and ∆i are initially all 0. When a new update (v, ci,v) arrives, for each row 1 ≤ j ≤ d in arrays Di
and ∆i, set r = j, u = hj(v), Di[r, u] = Di[r, u]+ci,v, ∆i[r, u] = ∆i[r,u]+ci,v. If ∆i[r, u] ≥ βNi, then set ∆i,r,u
= ∆i[r, u], sub-thread i sends a message (r, u, ∆i,r,u) to the merging thread, and resets ∆i[r, u] = 0,
where 0 < α < ε denotes the error tolerance, β = ε – α denotes the delayed update coefficient, ε denotes
the user-specified error bound, δ denotes the user-specified probability of failure, Ni denotes the total
frequencies of all items in Si until now.

Second, the merging thread maintains a global CM sketch D with ln(1)δ rows and e α
columns. D is initially all 0. When receiving a message (r, u, ∆i,r,u) from sub-thread i (1 ≤ i ≤ m), it
updates D by adding ∆i,r,u to D[r, u], i.e., D[r, u] = D[r, u] + ∆i,r,u.

2343

Third, the parallel CM sketch algorithm answers a query about an item v by reporting

ˆ min{ [, h { }] | 1,..., }v jf D j v j d Nβ= = + , (1)

where N denotes the total frequencies of all items in S.

In this parallel CM sketch algorithm, sub-thread i will not report the counters in Di to the merging
thread until ∆i[r, u] ≥ βNi which greatly reduces the communication overhead. We call this
β-delayed update. That is to say, our approach does not periodically merge all the CM sketches, just
updates the counters in the CM sketches violating the threshold. In fact we will see the
communication overhead decreases rapidly with time, therefore it will not become a performance
bottleneck.

In the implementation, we used a shared bounded buffer implemented with semaphores to handle
the communication between the threads. The sub-threads generate messages which are processed by
the merging thread, therefore from this perspective, the sub-threads and merging thread develop a
similar producer-consumer relationship. Two counting semaphores semmesgs and semslots are used
to represent respectively the number of messages in the buffer and the number of free slots. When a
sub-thread needs to send a message to the merging thread, it first calls the sem wait to decrement
semslots, and then acquires a lock on the buffer, inserts the message into the buffer, at last releases the
lock on the buffer and calls the sem post to increment semmesgs. Correspondingly, the merging
thread needs to receive the messages sent by the subthreads, it first calls the sem wait to decrement
semmesgs, and then gets a message from the buffer, at last calls the sem post to increment semslots.

Evaluation
In our experiments, we used the parallel CM sketch algorithm to estimate the traffic volume (i.e.,

the total number of bytes) of each flow defined by the famous two-tuple (i.e., source IP address and
destination IP address). Three real traffic traces were used in the experiments for illustration purposes.
In the experiments, ε ranged from 0.0001 to 0.0005 (5 different values), δ = 0.1, m ranged from 2 to 7
(6 different values), β ranged from 0.1ε to 0.9ε (9 different values), α = ε − β.

Fig. 2 Average relative error of P-CM and CM

Fig. 3 Failure rate of P-CM and CM

Fig. 2 plots the average relative error with standard deviation of P-CM and CM on three real traffic
traces. We can see that the average relative error of P-CM is much higher than that of CM with the

2344

same error bound. This might be because that the estimated frequencies in P-CM are often too much
overestimated as a result of theβ-delayed update. Fig. 3 plots the failure rate with standard deviation
of P-CM and CM on three real traffic traces. Note that the standard deviation of CM is 0. As can be
seen, the failure rate of P-CM is much less than that of CM with the same error bound. Fig. 4 plots the
speedup with standard deviation of P-CM compared to CM on three real traffic traces. From this
figure, it can be seen that the speedup increases almost linearly with the number of sub-threads m.

Fig. 4 Speedup of P-CM

Conclusion
In this paper, we consider the problem of parallelizing the famous Count-Min sketch algorithm in

the context of multi-core processors. The proposed parallel Count-Min sketch algorithm makes use of
the delayed update concept to significantly reduce the merge overhead and achieves near-linear
speedup.

Acknowledgements
This work is partially supported by the Tianjin Municipal Science and Technology Commission

under Grant No. 13ZCZDGX01098.

References

[1] S. Muthukrishnan, "Data streams: Algorithms and applications" Now Publishers Inc, 2005.

[2] C. Estan, G. Varghese. "New directions in traffic measurement and accounting: Focusing on the
elephants, ignoring the mice." ACM TOCS, 2003.

[3] Y. Gao, Z. Li, Y. Chen. "A dos resilient flow-level intrusion detection approach for high-speed
networks." IEEE ICDCS, 2006.

[4] B. Krishnamurthy, S. Sen, Y. Zhang, et al. "Sketch-based change detection: methods, evaluation,
and applications." ACM IMC, 2003.

[5] Y. Liu, L. Zhang, Y Guan. "Sketch-based streaming PCA algorithm for network-wide traffic
anomaly detection." IEEE ICDCS, 2010.

[6] G. Cormode, S. Muthukrishnan. "An improved data stream summary: the count-min sketch and
its applications." Journal of Algorithms, 2005.

[7] A. Kumar, M. Sung, JJ. Xu and J. Wang. "Data streaming algorithms for efficient and accurate
estimation of flow size distribution" ACM SIGMETRICS Performance Evaluation Review, 2004.

2345

