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Abstract. In this paper, we present a novel method that exploits the great parallel capability of 
multi-cores to speed up the famous Count-Min sketch algorithm. The proposed parallel Count-Min 
sketch algorithm equally distributes the input data stream into sub-threads which use the original 
Count-Min sketch algorithm to process the sub-streams. The counters in each local Count-Min sketch 
with frequency increments exceeding a pre-defined threshold are sent to a merging thread which is 
able to return the estimated frequencies satisfying the (ε, δ)-approximation requirement. Experiments 
with real traffic traces demonstrate the excellent performance as well as the effects of parameters. The 
parallel Count-Min sketch algorithm achieves near-linear speedup at the cost of greater memory use. 

Introduction 
Sketch-based algorithms [1] have been commonly used in high-speed network traffic monitoring 

and measurement applications, such as heavy-hitter identification [2], DoS and port scan detection [3], 
network change detection [4], and network-wide traffic anomaly detection [5]. In this paper, we focus 
on the well-known Count-Min (CM) sketch algorithm [6] which has proved to be a versatile summary 
for frequency-based properties of a stream that can be used for answering a variety of queries on the 
input stream, including point and range queries, quantiles, and heavy hitters, among others. However, 
as the network bandwidth grows exponentially [7], the ever-increasing volume of network traffic 
calls for a much higher per-packet processing speed. In the CM sketch, an update requires several 
hash calculations and memory accesses, and these operations must be performed for every packet. In 
practice, the per-packet processing on backbone links needs to be accomplished within time scales of 
a few nanoseconds. In this paper, we propose a simple method to parallelize the CM sketch algorithm 
on a commodity multi-core machine. 

Problem Definition 

We model the data stream S = (p1,p2,...,pt,...), where pt = (v,cv,t), v ∈ U (U = {1...k}, k is a positive 
integer) is the item name, t is the timestamp, cv,t > 0 is the weight of the item. We assume the items are 
ordered by timestamp. In the rest of the paper, we drop reference to t when we are interested only in 
the “current” values of frequencies. To process a stream in parallel, this paper uses the independent 
per-hardware-thread data structures. Suppose there are m+1 hardware threads in the multi-core 
processor. The stream S is equally partitioned into m sub-streams S1,S2,...,Sm. Each sub-stream Si 
consists of a sequence of tuples (v,ci,v,t) ordered by timestamp t, where 1 ≤ i ≤ m is the ID of the 
sub-stream, v ∈U is the item name, ci,v,t > 0 is the weight of the item. Each hardware thread i (1 ≤ i ≤ 
m) processes Si and maintains a local CM sketch Di. The hardware thread m+1 maintains one global 
CM sketch D which is produced from D1,...,Dm. The objective is for D to continuously guarantee that 
with probability at least 1 δ− , ˆ

v v vf f f Nε≤ ≤ + , where fv is the true frequency of item v, is the 
estimated frequency of item v given by D, N is the total frequencies of all items in S, 0ε >  is the 
user-specified error bound, and δ > 0 is the user-specified probability of failure. 
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Parallel Count-Min sketch algorithm 
In this section, we show how to effectively parallelize the CM sketch algorithm. The basic idea is 

to simulate sequential execution and run multiple copies of CM sketches in different hardware 
threads. Each hardware thread has its own independent CM sketch for storing the frequencies of items. 
If there are m hardware threads simultaneously running, then there are m different CM sketches. 
According to whether merging the CM sketches is required for answering the queries, the schemes 
are classified into two categories. In the first hash-based partitioning, the same items go to the same 
threads, thus there is no need for merging. However, in the real world the distributions of data streams 
are usually skewed, thus the threads processing the frequent items will be overloaded, while others 
will be lightly loaded. Therefore it suffers from problems in load balancing. In the second 
block-based partitioning (considered in this paper), the same items might go to different threads. In 
this case, merging the CM sketches is required for answering queries. One simple way is to 
periodically (e.g., every other second) merge the CM sketches into a global one. However, 
periodically merging can’t provide continuous query answers. This is because that only at the time of 
merging, the accuracy of returned answers can be guaranteed. Moreover, the merging overhead is 
dependent on the merging frequency, greater the merging frequency and higher is the overhead. Here 
we propose a novel merging method which is not only capable of providing continuous answers, but 
also exhibits very low merge overhead, therefore achieves much higher processing throughput. 

 
Fig. 1. Overview architecture of parallel CM sketches 

The overview architecture is shown in Fig. 1. The system consists of m+1 hardware threads 
(including the merging thread). Each sub-thread i (1 ≤ i ≤ m) observes a continuous sub-stream of 
updates and communicates with the merging thread under certain condition to ensure the accuracy of 
estimated frequencies. All sub-threads run the same original CM sketch algorithm and each maintains 
a CM sketch locally, i.e., an (α, δ)-CM sketch (a 2-d array with ln(1 )δ    rows and e α    columns) 
and a set of pair-wise independent hash function h1,...,hd. It is important to note that all CM sketches 
share the same set of hash functions. The merging thread maintains a global CM sketch with same 
size of sub-threads. Precisely, the protocol of parallelizing the (ε, δ)-CM sketch algorithm can be 
described as follows.  

First, each sub-thread i (1 ≤ i ≤ m) maintains an (α, δ)-CM sketch Di (with the same set of pairwise 
independent hash function h1,...,hd) for the items in sub-stream Si and a 2-d array ∆i with the same 
size. Di and ∆i are initially all 0. When a new update (v, ci,v) arrives, for each row 1 ≤ j ≤ d in arrays Di 
and ∆i, set r = j, u = hj(v), Di[r, u] = Di[r, u]+ci,v, ∆i[r, u] = ∆i[r,u]+ci,v. If ∆i[r, u] ≥ βNi, then set ∆i,r,u 
= ∆i[r, u], sub-thread i sends a message (r, u, ∆i,r,u) to the merging thread, and resets ∆i[r, u] = 0, 
where 0 < α < ε denotes the error tolerance, β = ε – α denotes the delayed update coefficient, ε denotes 
the user-specified error bound, δ denotes the user-specified probability of failure, Ni denotes the total 
frequencies of all items in Si until now. 

Second, the merging thread maintains a global CM sketch D with ln(1 )δ    rows and e α     
columns. D is initially all 0. When receiving a message (r, u, ∆i,r,u) from sub-thread i (1 ≤ i ≤ m), it 
updates D by adding ∆i,r,u to D[r, u], i.e., D[r, u] = D[r, u] + ∆i,r,u. 
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Third, the parallel CM sketch algorithm answers a query about an item v by reporting  
 
ˆ min{ [ , h { }] | 1,..., }v jf D j v j d Nβ= = + ,                                                                                                (1) 

 
where N denotes the total frequencies of all items in S. 

In this parallel CM sketch algorithm, sub-thread i will not report the counters in Di to the merging 
thread until ∆i[r, u] ≥  βNi which greatly reduces the communication overhead. We call this 
β-delayed update. That is to say, our approach does not periodically merge all the CM sketches, just 
updates the counters in the CM sketches violating the threshold. In fact we will see the 
communication overhead decreases rapidly with time, therefore it will not become a performance 
bottleneck. 

In the implementation, we used a shared bounded buffer implemented with semaphores to handle 
the communication between the threads. The sub-threads generate messages which are processed by 
the merging thread, therefore from this perspective, the sub-threads and merging thread develop a 
similar producer-consumer relationship. Two counting semaphores semmesgs and semslots are used 
to represent respectively the number of messages in the buffer and the number of free slots. When a 
sub-thread needs to send a message to the merging thread, it first calls the sem wait to decrement 
semslots, and then acquires a lock on the buffer, inserts the message into the buffer, at last releases the 
lock on the buffer and calls the sem post to increment semmesgs. Correspondingly, the merging 
thread needs to receive the messages sent by the subthreads, it first calls the sem  wait to decrement 
semmesgs, and then gets a message from the buffer, at last calls the sem post to increment semslots. 

Evaluation 
In our experiments, we used the parallel CM sketch algorithm to estimate the traffic volume (i.e., 

the total number of bytes) of each flow defined by the famous two-tuple (i.e., source IP address and 
destination IP address). Three real traffic traces were used in the experiments for illustration purposes.  
In the experiments, ε ranged from 0.0001 to 0.0005 (5 different values), δ = 0.1, m ranged from 2 to 7 
(6 different values), β ranged from 0.1ε to 0.9ε (9 different values), α = ε − β. 

 
Fig. 2 Average relative error of P-CM and CM  

 
Fig. 3 Failure rate of P-CM and CM 

Fig. 2 plots the average relative error with standard deviation of P-CM and CM on three real traffic 
traces. We can see that the average relative error of P-CM is much higher than that of CM with the 
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same error bound. This might be because that the estimated frequencies in P-CM are often too much 
overestimated as a result of theβ-delayed update. Fig. 3 plots the failure rate with standard deviation 
of P-CM and CM on three real traffic traces. Note that the standard deviation of CM is 0. As can be 
seen, the failure rate of P-CM is much less than that of CM with the same error bound. Fig. 4 plots the 
speedup with standard deviation of P-CM compared to CM on three real traffic traces. From this 
figure, it can be seen that the speedup increases almost linearly with the number of sub-threads m. 

 
Fig. 4 Speedup of P-CM 

Conclusion 
In this paper, we consider the problem of parallelizing the famous Count-Min sketch algorithm in 

the context of multi-core processors. The proposed parallel Count-Min sketch algorithm makes use of 
the delayed update concept to significantly reduce the merge overhead and achieves near-linear 
speedup. 
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