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Abstract: The H∞  filter for continuous-time linear systems with measurement losses is studied by 
using lose ratio. The optimal strategies of the filter are provided and its optimality is proved. Then, 
the necessary and sufficient conditions of the optimal strategies are solved. Finally, the effectiveness 
of the filter is verified. 

Introduction 

With the computer technology and network communication technology introduced into control 
system, the control system structure become more and more complex. The emergence of the H∞  
filter method makes up the defect of the modern control theory. The assumption of noise can be 
neglected in H∞  filter, then it’s more accurate description for real system noise[1]. There is 
absolute advantage for H∞  filter when the requirement of every state is different. Due to the 
influence of various factors, packet dropouts and time-delay is a common phenomenon in network 
communication. 

A class of networked control systems with uncertain parameters and time-delay and packet 
losses in the network communication are studied in [2-9]. variety H∞  filters with time-delay 
saturation system are designed in [1]. H∞  filter for discrete time switched systems with 
measurement losses are analyzed in [10]. H∞  filter for discrete-time systems with measurement 
losses has been analyzed deeply, but similar problem couldn’t be studied for continuous-time 
systems. Since the continuous system is common in reality, H∞  filter for continuous-time with 
measurement losses is analyzed in this paper.In this paper, the continuous-time system with random 
measurement losses is analyzed. The stable filter has been derived and the optimal condition for the 
stability of the filter is proved.  

Problem statement 
A continuous-time linear system with measurement losses described by 
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                                                                              (1)
 

Where x  is the 1n×  state vector y  is the 1m×  measurement vector; ω  and ν  are the 
noise, F, C and L are time-varying matrices of appropriate dimensions. γ  are Bernoulli distributed 
random variables. If =1γ , the measurement is received. If =0γ ,the measurement is lost. Z is a linear 
combination of the states x ,where L is q m×  matrix, when L=I, the vectors reduces to the state 
vector. And Z is the aim of optimal estimation. 

the cost function is defined in the filtering method based on game theory. 
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Where 0P , Q, R, S are symmetric matrices of appropriate dimensions. It is difficult to compute 
the minimum 1J directly. First, performance boundaries makes 1

1J θ< . θ  is the specified 
performance boundaries. Then, we know  
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Thus, the problem is converted to solve the minimax problems, that is 
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It can be further derived by the relationship ˆẑ Lx=  and y Hxγ ν= + . 
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Where TS L S L= , in order to solve *J , First, the extremum of J  on 0x and w must be solved; 
then, the extremum on x̂  and y  could be solved.  

H∞ filter analysis 
Assuming a continuous-time system: 
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                                                                              (6) 

Then, the system is controlled and detected and γ is known at any time. 
A. The extremum of J  on w and 0x  

In this section, the maximum of cost function J on w  and 0x  is solved under the constraints 
of x Fx ω= + . It can be considered as a dynamic constrained optimal problem. First, the Hamilton 
function can be defined, resulting in 
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Where, the 
Tλ
θ

 is time-varying Lagrange multiplier. the necessary condition for the 

maximum is: ( ) ( ) ( ) ( )0ˆ0 0 0 , 0x x P Tλ λ= + = ( ) ( )1ˆT TA S x x C R y Cxλ λ θ γ γ−= − − − − −
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From 0 0 0 0ˆx x P λ= + , we can assume * *
Px x Pλ= + .where px and P are unknown function *x are *λ

homologous optimal estimations.  
The optimal estimation of w  and 0x are: 

( ) ( )** *
0 0ˆ, 0 0Q x x Pω λ λ= = +                                                                  (9) 

Differentiating (9) and substituting for *x are *λ  from (8) results in 
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For the equation (9), the left side and the right side are set identically to zero, resulting in 
( ) ( ) ( ) ( ) ( ) ( )1

0ˆ ˆ0 0 0T T
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 (11) 

Where (11) is Riccati differential equation, ( )P t  is solution of equation. 
B. The extremum of J  on x̂ and y   

In this section, the mainly aim is computing the extremum of J  on ˆkx  and ky  based on 
last section’s solve. From last section, we can know the optimal strategy, resulting in 
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( ) ( )** *
0 0ˆ, 0 0Q x x Pω λ λ= = +  

From (8) are substituted into the cost function, and adding the identically zero term 
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Results in the min-max problem 
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Subject to the dynamic constraints 
( ) ( ) ( ) ( )ˆ ˆ0 0p p p px Ax PCS y Cx PS x x x xγ γ θ= + − − − = ( ) ( )1

00T TP AP PA Q P C R C S P P Pγ θ−= + + − − = (14) 

Defining variables are ˆ,p pr x x q y Cxγ= − = − .Because r  is independent with q , * *0, 0r q= =  can 
be derived by (12-13). 

From (9) and (13), we can know when * *ˆ ˆ,p px x y Cxγ= = , the optimal strategy is derived, 
resulting in 

* *ˆ ˆ,p px x y Cxγ= =  ( ) ( )** *
0 0ˆ, 0 0Q x x Pω λ λ= = +  * *

px x Pλ= +                                    (15) 

Then the value of cost function can result in ( )( )** * *ˆ , , , 0 0J x y xω = .  

C. Optimal condition 
In this section, we can prove that the existence of ( )P t  is a necessary and sufficient condition 

for optimal strategy. For the optimal strategy, there must be ( )( ) ( )( )** * * *ˆ ˆ, , , 0 , , , 0 0J J x y x J x y xω ω∆ = − ≤ . 

Sufficiency:  Assume that ( )P t  is bounded, the optimal strategies satisfy a saddle-point 
inequality. That is 

( )( ) ( )( ) ( )( )* ** * * * * *ˆ ˆ ˆ, , , 0 , , , 0 , , , 0J x y x J x y x J x y xω ω ω≤ ≤                                          (16) 

Where x̂ 、 y 、ω 、 ( )0x  show any strategies. 
Necessity: Assume that ( )P t  is unbounded, resulting in 
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Where * *ˆe x x∆ = −  represents error in the optimal estimate. 1t  is any time and is a little value. 
Due to the existence of ( )P t  is unknown. So the dynamic constraints don’t work in section A. 

Considering this strategy 
1 * *ˆ,QP e y Cxω γ−= ∆ =  [ ]10,t t ε∀ ∈ −                                                           (18) 

0, y Cxω γ= =  [ ]1 ,t t Tε∀ ∈ −                                                                 (19) 

From (18-19) are substituted into J∆ , resulting in 
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The former can be shown as ( ) ( ) ( )* *
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Where ( ) 1A QP−Φ • = +  is state transition matrix and ( ) ( )*
0ˆ0 0e x x∆ = − . 
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Therefore, (21) is contradiction with assumption. Hence, ( )P t  is bounded at [0,T]. 
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Simulation examples 
Consider the following scalar continuous system: 

 

x x
y x
z x

ω
γ ν

= +
 = +
 =



                                                                            (22) 

So A=C=L=1. Assuming that Q=R=S=1, the Riccati differential equation can be derived. 
( )1 22 1T T TP AP PA Q PC R CP PL SLP P Pγ θ θ γ−= + + − + = + + −                                      (23) 

Where loss probability is 0.2 and the value of θ  is 7/16. The simulation results are as follows. 
This is the estimation error curve. The MSE curve of all measurement received is green, 

however, when the loss probability of measurement is 0.2, the MSE curve is red. From this figure, 
we can know the filter is convergence effectively, but the performance is falling. 

 
Figure 1 Simulation Result  

Conclusion 

In this paper, continuous-time H∞ filter with random measurement losses is designed for the 
foundation problem of measurement losses in networked control systems. The structure of the filter 
is described in section 2. The optimal filter is solved and the necessary and sufficient conditions of 
the optimal filter is that ( )P t  is bounded. Finally, the effectiveness of filter is validated by 
simulation.  
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