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Abstract. In this paper, we present the pairing computation on Jacobi quadric curves using weight 
projective coordinates. In our algorithm, the cost of addition step reduced to 1M+(k+9)m+3s+1mt, and 

the cost of doubling step is 1M+1S+(k+3)m+8s+2ma+1md. 

Introduction 

The fast algorithms for pairing computation play an important role in pairing-based cryptography. 
Generally, we using Miller’s algorithm to compute pairing. Consequently, many improvements on 

Miller’s algorithm were presented. A well-known elliptic curve model is Weierstrass model, and 

many efficient formulas for pairing computation for this model can be found in [1, 2, 3, 4, 5]. One 

of the ideas to make improvements is to try to compute pairings on other elliptic curve models 

which provide more efficient algorithms for the group law. 

The use of Jacobi quartic curves in cryptology was explained in [6] and [7]. Then many other 

formulas for point addition and doubling on Jacobi quartic curves are given in the literature, see [8] 

for a brief development history of Jacobi quartic curves. While pairing computation on Jacobi 

quartic curves was proposed by Wang et al. [9] in 2011. In [10], Zhang et al. proposed a geometric 

approach to explain the group law on Jacobi quartic curves which are seen as the intersection of 

two quadratic surfaces in space. Using the geometry interpretation, we construct Miller function. 
Then we present explicit formulae for the addition and doubling steps in Miller’s algorithm to 

compute the Tate pairing on Jacobi quartic curves. Note that they used the projective coordinates. 

The cost of the algorithm for pairing computation over Jacobi quartic curves consists three parts: 

the cost of updating the point, the cost of updating the iteration function, and the cost of evaluating 

the Miller function at some point Q . In this paper, we using geometric interpretation of the group 

law on Jacobi quartic curves proposed in [10] and weight projective coordinates to compute Tate 

pairing of Jacobi quartic curves over finite field. In our algorithm, the cost of addition step reduced 

to   tmsmkM 1391  , and the cost of doubling step is   da mmsmkSM 128311  . 

Note that we use m and s  denote the costs of multiplication and squaring in the base field qF ; 

M and S denote the costs of multiplication and squaring in the extension field kq
F ; cm denotes the 

cost of multiply by a constant in the base field. 

Preliminaries 

In this section we briefly review the preliminaries of Tate pairing and the background of Jacobi 

quartic curves. 

Tate Pairing. Let qF be a finite field, p is an odd prime,  , 3, 1.nq p q   E be an elliptic curve 

defined over qF with neutral element denoted by O . n is a prime,  q|#E Fn . Let 1k denote the 

embedding degree with respect to n , that is k is the smallest integer such that 1| kqn . For any 

point ( )[ ]qP E F n , there exists a rational function Pf defined over qF such that ( ) ( ) ( )pdiv f n P n O  . 

The rational function is unique up to a non-zero scalar multiple according to Riemann-Roach 
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theorem. The group of n -th roots of unity in kq
F is denoted by n . The reduced Tate pairing is then 

defined as 

   1 /
: ( ) ( ) : ( , ) ( ) .

k

k

q n

n q n Pq
T E F n E F P Q f Q


   

The rational function Pf can be computed in polynomial time by using Miller’s algorithm ([5]). 

Let  
2011 ,,, nnnn l  be the binary representation of n ,where 11 ln .Let  EFg qST , be the 

rational function with divisor ,( ) ( ) ( ) ( ) ( )T Sdiv g T S O T S     , where ST   denotes the sum of 

T  and S on E ,and additions of the form ( ) ( )T S denote formal addition in the divisor group. The 

Miller’s algorithm which starts with 1,  fPT is as follows: 

 

Algorithm 1 Miller’s algorithm 

Output: 





1

0
2

l

i

i

inn , where      .,.1,0 kqqi FEQFEPn   

return 
 1 /

( )
kq n

nf Q


 

1: PTf  ,1  

2: for 2 li  down to 0 do do 

3:  2

, ( ), [2]T Tf f g Q T T    

4: if ni = 1 then then 

5:  , ( ),T Pf f g Q T T P     

6: end if 

7: end for 

8: return 
  nq

n

k

f
/1

 

 

The Jacobi Quartic Curves. A Jacobi quartic elliptic curve over a finite field qF is defined by 

the following equation 12: 242

,  axdxyE da
where qFad , and the discriminant 

  0256
22  da . In [7], Billet and Joye proved that if baxxyE  32:  has a point of 

order 2 then E is bi-rationally equivalent to a Jacobi quartic curve. The projective closure of daE , in 

2P  is 

  2 2 2 4 2 2 4: : : 2X Y Z P Y Z dX aX Y Z    . This curve consists of the points  yx,  on the 

affine curve baE , , embedded as usual into 2P by    1::, yxyx  , and extra points at infinity, i.e., 

points when 0Z .There is exactly one infinity point, namely  0:1:0O .This point is singular. 

In fact, the Jacobi quartic curve can be seen as the intersection of quadratic surfaces in space. 

That is, the Jacobi quartic curve can be written as the form 

2 2 2 2 2

, : 2 0, 0a dJ aX Z dW Y X ZW       

With the projective coordinates  ZWYX ::: , the identity element is represented by the 

quadruplet  1:0:1:0O . The negative of  ZWYX :::  is  .:::- ZWYX  

In [10], a geometric interpretation of the group law on Jacobi quartic curves was presented. A 

projective plane is given by a homogeneous projective equation 0 . By abuse of notation we still 

use the symbol  to denote the projective plane. Since the intersection of  and ,a dJ is the 

intersection of two quadratic curves on the projective plane, any plane  intersects ,a dJ at exactly 

four points, counted with appropriate multiplicities. The divisor of  is defined as: 
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,

( ) ( )
a d

R

R J

div n R


    

Where Rn is the intersection multiplicity of and
,a d

J at the point R .Then the quotient of two 

projective planes is a well-defined function which gives a principal divisor. As we will see, this 

divisor leads to the geometric interpretation of the group law on ,a dJ . 

Lemma 1. ([10]) For Jacobi quartic curve ,a dJ with neutral element  1:0:1:0O . Then 4 points 

(not necessary distinct) 321 PPP ，，  and 4P  satisfy OPPPP  4321  if and only if there is a plane 

  with          .4321 PPPPdiv   

Theorem 2. ([10]) Let daJ , : 0,02 22222  ZWXYdWZaX be a Jacobi quartic curve, 

 1:0:1:0O . Let  11111 ZWYXP ：：： ,  22222 ZWYXP ：：： be two points on ,a dJ . Let 

 1111213 ZWYXPPP ：：： . Then Miller function 
1 2, ( , , , )P Pg X Y W Z which satisfies 

         OPPPgdiv PP  321, 21
 is   

 

   
1 2

1 2

3

, ,

,

, , 3 3 3

, , , .
P P O X Y W

P P

P O O

C X C Y Z C W
g X Y Z W

W Y Z Z Y W

  
 

  




 

In the case 21 PP   and OPP 21， , the coefficients are given by 

       1 2 2 2 1 1 2 1 1 2 2 1 1 1 2 2, , .X Y WC W Z Y W Z Y C X W X W C X Z Y X Z Y           

If OPP  21 , the coefficients are given by  

  .,,22 11

2

1

2

11111111 ZYZdWCWYCYZXWaXC WYX   

Pairing Computation Using Weighted Projective Coordinates 

For Jacobi quartic curves, the weighted projective coordinates which represent the points as 

   ZYXZYX  :::: 2  for all nonzero qF on the curve  

.2: 42242

, ZZaXdXYJW da   

Unlike the homogeneous projective case, this curve is non-singular provided that 0 (see [8]). 
Billet and Joye [7] proposed a faster inversion-free unified addition algorithm on the curve  

42242 2 ZZaXdXY  .  
The point addition in projective weighted coordinates are given by [5]: 

     222111333 :::::: ZYXZYXZYX   

where  

,2212113 ZXYYZXX   ,2

2

2

1

2

2

2

13 XXZZZ   
2 2 2 2 2 2 2

3 1 2 1 2 1 1 2 2 1 2 1 1 2 2 3 3( ) (( )( ) (2 2) )Y X X Z Z X Z X Z YY a X Z X Z X Z          

The doubling formula in projective weighted coordinates are given by [5]: 

 3 3 3 1 1 1( : : ) 2 ( : : )X Y Z X Y Z  

where  

.2,,2 2

3

2

3

4

13

4

1

4

131113 ZaXYYXZZZYXX   

 

Formula of Tate Pairing Using Weighted Projective Coordinates. Let kq
F such that 

/2 /4

2 4

, ,k kq q
F F   and /2

3 .kq
F   That is 

2 31, , ,    is a basis of kq
F  as a vector space over 4/kq

F . 
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For a point  ZYX ::  on the curve 2 4 4 2 2 2 4: 2 ,JW Y d X a X Z Z      then  : :X Y Z  be a 

point on 
42242 2 ZZaXdXY  . Hence, choose ' ' ' /2

' ( : : ) ( ),kQ Q Q q
Q JWX Y Z F


   then  

' ' ' ,( : : ) ( : : ) ( ).kQ Q Q a dQ Q Q q
Q X Y Z X Y Z JW F    

Here, let /x X Z  and 
2/ .y Y Z  

From Theorem 2, the Miller function  

     2

2 2 2 2

3 3 3, ( 1 ) / ( 1 ).x y x
h x y c x c y c x x y y x x        

Therefore, in weighted projective coordinates, for addition step, the Miller function 

 
 
   

 
 

 
 

' '2

2

' ' ' '

'

2

' '

'

2

' '

2 22

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3

2 2

2 2 2 2

3 3 3

2 2

2 2 2 2 2 2

3 3 3 1 2

11 1
,

1 1

1

1

1

Q Q

Q

Q

x Q y Q Q Q Qx

Q Q x y x
Q Q Q Q

Q

x y x

Q

Q

X Y X

Q

x yc x c y c x
h x y c c c

x y y x x x y y x x x x

x
c c c

x y y x x

x
C C C

x y y x x Z Z



  


  




  



   
       
      
 

     
  

      
  

 

Where .
1

,
1

222
'

'

' Q

Q

Q
x

y

x 






 Since 2133 ,,,, ' ZZyyx

Q
and

2 all belong to ,2/kq
F then 

 

'

/2

' '

2 2

2 2 2 2 2 2

3 3 3 1 2

1

1
k

Q

Q

q

Q

x
F

x y y x x Z Z




 

  
.So it can be discarded in pairing computation, so we only 

have to evaluate .2XYX CCC    

Weighted Projective Coordinates. Let   1 1 1 2 2 2( : Y : Z ), ( : Y : Z ) adT X P X JW   and 

3 3 3( : Y : Z ).T P X   We represent a point with 0Z using the sextuplet 
2 2(X : Y : Z: X : : )Z XZ , 

using this redundant coordinates. 

Addition Step. From Theorem 2, we can get in addition step:  

2

2 2 2 2 2 2 2 2

1 2 2 2 1 1 1 2 2 2 1 1 2 2 1 1 1 1 2 2( ) ( ), , ( ) ( )X Y X
C X Z Y X Z Y C X X Z X X Z C X Z Z Y X Z Z Y           

Let  12  at the addition step in pairing computation PT   and 2,,
XYX CCC are computed as 

follows: 
2 2 2 2

1 1 1 1 1 1 1 2 2 2 2 2 2 2, , , ,A X B Z C X Z A X B Z C X Z     ， ， 

1 2 1 2 1 2 1 2 ,D A A E B B F C C G Y Y       ， ， ，     1 1 2 22 , ,H D E F I B Y B Y        

   1 1 2 2 3 3 3, ,J A B A B tF G K A B Z E D         ，  

   2 2

3 3 3 3 3 1 1 2 2, , ,A X B Z X C Y C Y F G         

3 3 2

3 3, (( ) ) / 2,Y H J K C X Z K         1 1 1 2 2 2 ,XC A B Y A B Y D I         

   1 1 2 2 ,YC A C A C D F         2 2 2 2 1 1 1 .
X

C C B Y C B Y F I         

Then the total cost of computation
2 2

3 3 3 3 3 3 3( : : )T P X Y Z X Z X Z  ： ： ： and 2,,
XYX CCC is 

tmsm 1310  , where tm  denote the cost of multiplication by constant  12  at . Since P is fixed 

during pairing computation, let 12 Z .The cost of computing PT  and 2,,
XYX CCC  is 

.139 tmsm  So the cost of addition step reduced to   .1391 tmsmkM   

Doubling Step. From Theorem 2, we can get in doubling step: 

  2

3 2 2 4 2 4

1 1 1 1 1 1 1 1 1 1 1 12 2 , , .X Y X
C aX Z X Z Z Y C X Y C dX Y Z Z         
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Using the redundant coordinates 2 2

1 1 1 1 1 1 1( : : )X Y Z X Z X Z： ： ： , the doubling step in pairing 

computation P2 and 2,,
XYX CCC can be computed as follows: 

2 2 2 2

1 1 1 1, , ,A X B Z C X Z H A I B    ， , 3 1 32 , ,X Y C Z I H     

  22 2 2

3 3 3 3 1, , / 2D X E Z F X Z D E J Y      ， , 2

3 2 ,Y J aD E    

  12 ,XC C aA B Y       2

2

1 1 / 2Y X
C A Y C dH Y B J I H        ，  

Then the total cost of the coordinates of P2  and 2,,
XYX CCC is da mmsm 1283  . So the cost 

of doubling step is  1 1 3 8 2 1a dM S k m s m m      . 
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