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Abstract. For 1D and 2D image feature extraction ignore the structural information of the image, 
resulting the loss of recognition accuracy, the feature extraction of 3D and multiplanar images while 

considering the data structure with each other, but the curse of dimensionality increases the 

computational complexity. Using manifold learning, embedding stable manifold into the original 

data space, so that the multidimensional data in the feature data is mapped to the manifold, 

discovered that the low dimensional structure hidden in high dimensional data which people unable 

to perceive, and then under the premise of without losing the data information, reduce the 

dimension of the raw data, so as to reduce the computational complexity. 

Manifold and Manifold Learning 

The Basic Principle of Manifold Learning. The six elements of manifold learning are: high 

dimensional data observation, select the appropriate intrinsic dimension and the low dimensional 

representation of high dimension data, the embedded mapping of the manifold, refactoring mapping 

in data recovery, and the limitation conditions of the filter noise. Manifold learning assumption 

there is a low dimensional manifold in the high dimensional data, the low dimensional manifold can 

contain most of the information of the data. Through the mapping and perception, the original high 

dimensional data is mapped to the low dimensional embedding space, and the low dimensional 
embedding space retains the original data correlation and geometry property [1]. Assuming that 

high-dimensional observation data  = , 1, ,D

ix x R i N  L , of which N is the data capacity for a 

given sample, D is the decision of the hig - dimensional data. Assums that the low dimensional 

manifold is d dR  ，intrinsic dimension is d（d<D and d=D). The image dimension reduction of 

manifold learning is to find the mapping relation from high dimensional data to the low dimensional 

embedding space. f , so as to  i iy f x ，thus obtain the low dimensional representation 
d

iy R  

of the high dimensional data ix [2]; In data reconstruction recovery phase, in order to restore the 

original image to the maximum precision and preserve the geometric structure of the original 

manifold data, according to the mapping function  i iy f x to meet the specific constraints, 

thereby restore the original data  1

i ix f y . 

The Classification of Manifold Learning. Manifold learning can have different classification 

methods based on different constraints and feature extraction criteria. The most commonly used is 
to classify them according to the structural characteristics of manifolds: 

(1) Linear analysis method: Linear refers to the mapping function f  to meet the linear 

relationship, including the main analysis method, multi scale transform, linear discrimination, etc. 

Such as two dimensional principal component analysis (2DPCA) method, the main idea is that in a 

row or column of the original data x  to find a underdetermined linear mapping matrix y , 

21  xy   which line mapping 1 and 2  are non random underdetermined matrix. Therefore, 

compression ranks of the rows and columns of a matrix y  is smaller than that of the x  [3].  

(2) Nonlinear analysis method：Linear analysis is a special form of nonlinear analysis, its main 

disadvantage is that when the data dimension is very high, the calculation of the characteristic 
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vector is not feasible. Due to the uncertainty of data distribution and dispersion, nonlinear analysis 

method on the assumption that the data in low dimensional nonlinear manifold, and then from the 

local neighborhood structure of the data, transform the manifold learning problem into the 

optimization problem of the objective function, by solving the objective function, it is concluded 

that the manifold data need to maintain the geometric properties, which is the underdetermined 
matrix, and then obtain the low dimensional embedding representation of the original 

high-dimensional data[4]. Typical local linear embedding method (LLE) is shown in Fig. 1 Firstly, 

for each data point 1,2, ,i N L of the sample data ix , Define k  nearest neighbor ijx  in its 

neighborhood, the reconstruction error is defined as: 
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Among them, ijW weights between ix and ijx , when
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iQ is a singular matrix, the conditions for mapping high dimensional data to low dimensional 

space are: 

 
2

1 1
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N k

i

i j ij

i j

Y y w y
 

                                                      (3) 

iy  are the output vector of ix ,  Y is the value of loss function for data reconstruction. The 

nonlinear analysis method preserves the geometric structure of the neighborhood, and the rotation, 

translation, and scaling of the neighbor points can also be well mapped. Therefore, the nonlinear 

analysis method can maintain the invariance of manifold structure [5]. 

 

 

Figure 1.  Local linear embedding representation 

Intrinsic Dimension Estimation 

The intrinsic dimension estimation is divided into two: one is using a geometric method to estimate 

and the local geometry of the high-dimensional data is examined; another is the eigenvalue method 

that is suitable for linear data, which is on global intrinsic dimension estimation [6]. In view of the 

characteristics of manifold learning, the advantage of the geometric method to estimate the intrinsic 

dimension is more and more concerned by people [7]. 

K - near Neighbor Graph Method. Assump that there are the independent random samples
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 1,n ny Y Y L in space DR , with ny as a vertex, for any point to connect all its K - nearest neighbour, 

get a K - neighbor graph. Grouping all iY  K- nearest neighbour as  , ,k i k i nN N y ，can be got the 

total length of K- neighbor graph for internal edge： 

   
,

,

1

  0
k i

n

r k n i

i Y N

eightinL y Y Y r f g constar to n
 

                                 (4) 

Assump that compact m dimensional manifold  ,M g , and through the evaluate limit of the total 

length of the internal line 
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Among them , ,m r k  is constant, which has nothing to do with f , when and only then 'd m , 

meet   /m r m    

Let  ,logn r k nl L y , By approximation conditions 

logn nl a n b                                                                (6) 

There   /a m r m  , 
   ,

, ,log /
M g

m r kb r mH f  , n is variance. 

 ,M g
H  is the limit value of limited value, and nonzero： 

       , 1
log

1

M g

M gH f f y dy

 



                                           (7) 

By sorting out the above formulas and concepts, we get the estimation of the intrinsic dimension 

of the data set is: 

/ 1m round r a
   
   

  
                                                        (8) 

There, a


is the linear mean square estimation of a , 0r  is weighting constant. 

Maximum Likelihood Estimation Method. Sampling random sample 1, nX XL  in the space
DR , set a point x as the center of them, circle with R as radius, then the number of samples 

1, nX XL in the ball are: 

      
1

, 0
n

i x

i

N t x I X S t t R


                                               (9) 

The distance between the kth nearest neighbor x  to the x  in the sampled sample 1, nX XL : 

     
m

k

k
f x V m T x

n
                                                          (10) 

For non-stationary process of fixed t , the parameter of Poisson process is: 

      1mt f x V m mt                                                         (11) 

The likelihood function is established for the Poisson process: 
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       
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R R

L m t dN t t dt                                                (12) 

Partial derivatives of likelihood function is calculated, and the maximum likelihood estimation 

are obtained: 

   
0 0

0
R RL
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Intrinsic dimension can be got from the above formulas: 
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Manifold Learning Algorithm Based on Sparse Representation 

Sparse Representation. Sparse representation theory pointed out that if the image data set of 

information in a manifold or in some kind of transformation is sparse (i.e. vector zero elements in 

the majority), then by the sparsity of the image data were underdetermined random mapping, image 

compression data without having to worry about losing any information [8]. Set image x as NM 

matrix, converts the matrix into column vector NMvec Rx )( , then the vector feature
)()( vecMvec Ry   

of the sample form of one dimensional compressed image can be obtained by the following 

equation:  

)()( vecvec xy                                                                (16) 

There, )( )()()( MNMR vecMNvecM  
is an underdetermined random matrix satisfying the RIP 

condition(random distribution of Gaussian distribution). Sparse representation of data acquisition 

mode is shown in Fig. 2. 

 

 

Figure 2.  Sparse representation of data collection 
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                                                  (17) 

Sparse Local Embedding Method. To solve these two problems, the local linear embedding 

method based on sparse representation (SLLE) is proposed [9]. SLLE by modifying the LLE to the 

local area of the modeling objective function, the introduction sparsity constraint, after sparse 

constraint optimization of local linear embedding, can be used in the high dimensional space to 

optimize the obtained (sparse) weight in the low dimensional space reconstruction of samples, and 

then the manifold structure of the sample is reduced [10]. 
Sparse local embedding algorithm: 

1. Input N  m  dimensional experimental samples  1 2, , m N

NA Y Y Y R  L , error 0  . 

2. 2 norm optimization is carried out for the experimental samples  1 2, , m N

NA Y Y Y R  L  to 
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generate a random matrix ,m mR Y A  .generating a new set of samples

 1 2` `, ` , ` m N

NA Y Y Y R  L . 

3. Set `

1 1, ` , `i i NA Y Y Y



   K L ，transformation to 1 norm optimization problem: 

1

arg min . , 1ii i i i ijj
W W s t A W Y W
   

    

4. For the sample set repeat step 3, the weight vector of the first sample i  is:

 1 2, 0,i i i inW W W W K K ，the weight of the first i sample is 0ijW  . 

5. Fixed the weight solution and minimizing the error of low dimensional neighborhood 

reconstruction  
2

i ij j

i j

x X W X     

6. Final output:  argminX X  
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