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Abstract. In this paper, an alternative control strategy based on the proportional integral (PI) 

observer is developed for attitude stabilization of a quadrotor subject to external disturbances. The 

PI observer has a simple structure with only two parameters that are needed to tune. Moreover, 

unlike high gain observers, gains of the PI observer can be controlled in a proper level because of 

applies of the integral action. This control strategy leads to a composite controller consisting of a 

backstepping controller and a PI disturbance observer. The design procedure for this composite 

controller consists of two stages. In the first stage, a PI disturbance observer is designed to estimate 

the external disturbances. In the second stage, a backstepping controller is designed to stabilize the 

attitude of a quadrotor under the assumption that the disturbance is measurable. And then the 

controller is integrated with the previous designed observer by replacing the disturbance in control 

law with its estimation. The resulting observer based controller can stabilize the attitude of a 

quadrotor subject to external disturbances and model inaccuracy. These results are confirmed by 

numerical simulations. 

Introduction 

A wide variety of attitude controller for quadrotor helicopters already exists in the literature. In [1], 

independent single-input-single-output (SISO) linear controllers are designed to regulate quadrotor 

attitude. The work in [2] shows that the classic model-independent PD controller can stabilize 

asymptotically the attitude of a quadrotor by considering the gyroscopic effects. Moreover, based 

on compensating Coriolis and gyroscopic torques and the use of PD2 feedback structure, an 

exponentially stabilizing controller is proposed. In [3], the rotor dynamics are considered in the 

model. Backstepping and sliding mode techniques are used to control the helicopter. Besides, 

Backstepping approaches applied to the quadrotor helicopter can also be found in [4]-[6]. 

However, few of the control strategies consider external disturbances and parametric 

uncertainties of the model. To achieve good performance in a hostile environment, a natural way is 

to estimate the disturbance by designing an observer, and then use the estimation to compensate for 

the disturbance. In [7], a high gain observer and sliding mode controller for a quadrotor is designed. 

This observer based controller is proved of good performance in simulations that consider a class of 

time-varying disturbances. But the high gain feedback solutions have drawbacks that they may 

saturate actuators, excite high frequency modes etc. The work in [8] designs a robust controller 

using sliding mode control driven by sliding mode disturbance observer (SMC-SMDO) approach 

for a small quadrotor helicopter. The SMC-SMDO technique allows for a continuous control robust 

to external disturbance and model uncertainties. However, as the parametric structure is more 

complex than other traditional observers, the parameter tuning is a difficult issue for sliding mode 

observer. 

Problem Statement 

The quadrotor has four rotors to generate thrust forces 
iT  and rolling moments 

iM , i = 1,2,3,4. Let 

 b b b bB O x y z  denotes the body fixed frame, whose origin is at the center of mass of the vehicle, 

and  e e e eE O x y z  denotes an inertial frame fixed with respect to the earth. The attitude of a 
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quadrotor is represented by three Euler angles  , ,
T

     and the body angular velocities by 

 , ,
T

p q r  .  

The quadrotor is considered to be a rigid body vehicle, whose dynamic equation of attitude 

motion 

1 1J J J d                                                                (1) 

where 
3R   is the input torques applied to the center of mass of the vehicle, 

3 3J R   is the 

known inertia matrix, and 
 , ,

T

x y zd d d d
 is the unknown external disturbances. 

The designed   is generated from aerodynamic forces and rolling moments produced by four 

propellers. Aerodynamic force of a propeller can be shown to be proportional to square of its 

rotational speed using momentum theory. It is modeled as [1] 

2( )TT C A R                                                             (2) 

where TC  is the thrust coefficient,   is the air density, A is the propeller disk area,   is the 

propeller rotational speed (in radian) and R is rotor radius.  

Similarly, aerodynamic rolling moment of a propeller can be shown to be proportional to square 

of its rotational speed using momentum theory. It is modeled as [1] 

2( )MM C A R R                                                            (3) 

where MC  is the rolling moment coefficient. 

Then the input torques 
 , ,

T

x y z   
 and the total thrust F produced by all four propellers can 

be expressed by 
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                                                        (4) 

where 
2

T Tb C AlR , 
3

M Mb C AlR  and l is the horizontal distance form the propeller centre to 

centre of gravity. Given desired input torques   and total thrust F, the desired rotor speeds can be 

obtained by solving (5).  

0.8669
( )

1 0.6573
G s

s


                                                           (5) 

This transfer function is identified from measured input-speed data.  

Design of Disturbance Observer 

It is well known that the PI observer is useful for linear systems with constant disturbance [5]. 

However, disturbances acted on a flying quadrotor depend on the state of aircraft and time. Since, in 

general, there is no prior information about the disturbances, it is reasonable to make following 

assumption. 

Assumption 1: The disturbance d is bounded and satisfies 

( )d t                                                                (6) 

where ( )t  is an unknown function whose upper bound  0,
sup ( )

t
t b

 


 and 
b  is a positive 

constant. This assumption implies that the disturbance varies in a bounded speed relative to the 

observer dynamics.  

As shown in Fig. 2, the dynamics of a PI observer for system (1) can be described by [13] 
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where 
3 3

1L R   and 
3 3

2L R   are matrices designed latter,  ˆ ˆ ˆ ˆ, ,
T

p q r 
 is the estimate of 

angular velocities   by observer and 
 ˆ ˆ ˆ ˆ, ,

T

x y zd d d d
 is the estimate of the disturbance d,   is the 

estimation error of angular velocities  , i.e. 
ˆ    . Then the problem is how to design the 

parametric matrices 1L  and 2L , such that the observer can approximately estimate the states and 

disturbances. 

Define the estimation error of disturbance as 
ˆe d d  . Then from (1), (2) and (7), we have 

1 3

32

0

0

L I
A B

ILe e e

  
 

        
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                                                        (8) 

where nI  denotes the identity matrix of dimension n. From (8) the following result can be 

obtained. 

Theorem 1: Under Assumption 1, for system (1), if the parametric matrices of PI observer (7) for 

system (1) are  

1 1 3 1

2 2 3 2

,  0

,  0

L k I k

L k I k

 

                                                               (9) 

Then we have  

1 2,

ˆ( ) ( ) 0
lim lim

ˆ 0( ) ( )k k t

t t

d t d t

 

 

   
                                                             (10)

 For any initial states ˆ(0)  and ˆ(0)d . 

Design of Composite Controller 

Original Controller Design. order to design a backstepping controller for a quadrotor, we will 

rewrite its dynamic model (1) in state-space form ( , )fX X U  with inputs vector U  and states 

vector X  chosen as 

   1 2 3 4 5 6, , , , , , , , , ,
TT

X x x x x x x       
                                      (11) 

   1 2 3, , , ,
TT

x y zU u u u    
                                                     (12) 

As the perturbations in stability flight are small, the transformation matrix between the rates of 

change of attitude   and the body angular velocities   can be considered as unity matrix. This 

implies that 
   , , , ,p q r   

 is hold. By assuming that the structure of quadrotor is symmetrical, 

the inertia matrix is 

0 0

0 0

0 0

xx

yy

zz

I

J I

I

 
 


 
                                                           (13) 

Given desired roll angular 1

dx  and its measurement 1x , the tracking error is 

1 1 1

dz x x                                                                  (14) 

Consider the positive definite Lyapunov function as follow 
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2

1 1

1
( )

2
V z z

                                                               (15) 

Then we use the Lyapunov theorem by considering the time derivative of (16) negative 

semi-definite 

1 1 1 2( ) ( )dV z z x x                                                           (16) 

The stabilization of 
1z  can be guaranteed by introducing a virtual control input 

2

dx  

2 1 1 1 1 0d dx z x                                                            (17)
 

Then the time derivative of the Lyapunov function (15) is 
2

1 1 1( ) 0V z z   .  

Now our goal is design input 1u  to make the roll angular velocity tracking the virtual control 

2

dx . The tracking error between measured 2x  and the virtual control is 

2 1 1 1 2

dz z x x                                                               (18) 

Then we consider the augmented Lyapunov function 

 2 2

1 2 1 2

1
( , )

2
V z z z z 

                                                      (19) 

and its time derivative 

    2 2

1 2 1 1 2 1 1 1 2 2 1 4 6 1 1 1 1 2 1 1( , ) d

xV z z z z z z x x z a x x b u d z z z           
                  (20) 

Note that during the attitude stabilization control, we always expect the angular accelerate to be 

zero, i.e. 0, 1,3,5d

ix i  . From (21), the input 1u  is then designed to make 1 2( , ) 0V z z  : 

 2

1 4 6 2 2 1 1( )zz yy xx xu I I x x I z z d     
                                              (21) 

with 
1 0  . 

The same steps are followed to obtain 2u  and 3u . 

 2

2 2 6 4 4 3 3( )xx zz yy yu I I x x I z z d     
                                              (22) 

 2

3 2 4 6 6 5 5( )yy xx zz zu I I x x I z z d     
                                              (23) 

Composite Controller Design. The observer based composite controller is obtained by 

replacing the disturbances in (21), (22) and (23) with its estimation yielded by the PI disturbance 

observer.  

To guarantee the stabilization of roll angular control subsystem, we design the parameter 2  in 

(21) as follow 

1

2

22

2

0

0 0

z
z

z








 
                                                              (24) 

Similarly we can also design 
4  and 

6  for 
2u  and 

3u  to make the pitch and yaw angular 

control subsystem stable. 
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Composite Controller Simulation 

In order to evaluate the proposed composite controller, simulations have been performed on the 

complete closed loop system in Matlab environment. External disturbances are assumed to be 

  
0.5 sin( ) 0.2sin( )

0.5 sin 2 0.2sin(2 )

0.25

x

y

z

d t

d d t

d

 

 

    
  

      
   
                                              (26) 

From (26) it can be seen that d is time varying and non-vanishing. Especially, the disturbance 

torque acted on 
zb  axis is constant and small due to the yaw angular of quadrotor aircraft is 

relatively hard to disturb. 

The initial states of the quadrotor and the PI observer are  0.5,0.5,0.5,0.5,0,0
T

X   and 

 ˆ 0,0,0
T

  ,  ˆ 0,0,0
T

d  . The desired attitude is set to be 
1 3 5 0d d dx x x   . Parameters of the 

composite controller are chosen to be 
1 3 5   , 

2 4 8   , 
5 4   and 

6 6  . From Theorem 1, 

the gain parameters of PI observer is tuned at 
1 10k   and 

2 100k  . 

It should be noted that, in practice, the parameters of dynamic model in observer (7) is obtained 

by identification or empiricism, which implies that there must be some difference between the 

parameters in observer (7) and the flight dynamic model of the quadrotor. To take into account such 

inaccurate of parameters, the dynamic parameters in observer (7) are obtained as follow 

1

observer 2

3

0 0

0 0

0 0

J J J







 
 

 
 
                                                         (27) 

where 1,2,3  is uniformly distributed random variable on  0.2,0.5
 

Therefore, our simulations are carried out in two cases. In case 1 we use the true parameters for 

the PI observer (7) and in case 2, inaccurate parameters obtained from (38) are used. The proposed 

composite controller is able to achieve good performance in both case 1 and case 2 (see Fig. 1). 

This proves the efficiency of the proposed control strategy. Furthermore, as shown in Fig. 2, the 

control inputs are continuous and smooth without the phenomenon of chattering. This implies that 

the proposed composite controller can overcome the drawbacks of conventional high gain observer, 

which may lead to the actuator saturate and high frequency modes.  
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Figure 1.  Attitude controlled in case 1 and case 2     Figure 2.  Control inputs in case 2 
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