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Abstract. A novel high resolution range-Doppler (RD) reconstruction method for high frequency 

(HF) radar via compressed sensing (CS) is proposed. In this framework, discontinuous frequency 
sub-bands and incomplete pulse bursts are used to reconstruct high resolution range profiles 

(HRRPs) and Doppler spectrum simultaneously. The method is capable of effective suppression of 

sidelobes introduced by bandwidth discontinuity and preservation of temporal coherence of the 

signal in Doppler analysis despite the time samples deficiency. Simulation and experiment results 

have demonstrated the effectiveness of the proposed method.  

Introduction 

HF radars are restricted to operating within narrow frequency bands due to serious user congestion. 
As a result, the achievable range resolution is poor. In order to overcome this problem, sparse 

frequency waveform (SFW) is adopted [1]. SFW is created by transmitting interference-free HF 

sub-bands selected by a frequency monitor to synthesize HRRPs. Simultaneously, a number of 

pulse bursts are employed for Doppler analysis. The HF radar signal is usually contaminated by 

strong transient interference, such as impulsive lightning and meteor echoes. Filtering out the 

interference in the time domain is possible [2], but it results in missing pulse bursts. Transmitting 

the SFW and excising the transient interference results in signal deficiency in 2D, simultaneously in 

the frequency domain and time domain. The spectrum discontinuity induces high range sidelobes 

which decrease the signal dynamic range. The time samples absence may destroy the temporal 

coherence of the signal and affect the Doppler accumulation. Prediction and interpolation are useful 
methods in solving these problems [3]. However, the application of these methods encounters 

difficulties from both noise and model errors. In this paper, the target scene is represented as a 

sparse signal. Simultaneous reconstruction of HRRPs and Doppler frequency with low sidelobes is 

accomplished via sparse signal estimation by using CS.  

Problem Formulation  

Within the coherent integral time (CIT), cN  pulse bursts are transmitted for Doppler processing. 

Each burst contains rsN  sub-bands selected randomly from a certain large frequency band to 

synthesize a large bandwidth. Suppose that the bandwidth of a sub-band and the synthetic 

bandwidth is rB  and B , respectively, and / r rB B N , rs rN N . The coarse range cell is defined 

as / 2r rR C B  , where C  is the velocity of light. After sub-pulse stretch processing [4], the signal 

within CIT of a certain coarse range cell containing K  moving targets with different velocities can 

be expressed as a rs cN N  matrix as follows: 
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the coarse range cell, kv  is the velocity of the k th target, and rT  is the pulse repetition 

interval(PRI). The carrier frequency is denoted by 
0j j rf B f k , where 0f  is the initial frequency, 

and 
jk  is a subset of rsN  elements selected from [0 : 1]rN  . Here 

jk  represents the available 

time-varying clean frequency sub-bands of HF radar. By removing the polluted sub-bands and 

corrupted pulse bursts contaminated by transient interference [2], the 2D deficient signal becomes: 

1[ , , , ]
cs0 1 q N ' ' ' ' '

x x ,x , x x  , 0 1csq N    , cs cN N                               (2) 

where '
x  is a submatrix of x . Signal (2) contains only a subset of the frequency sub-bands and an 

incomplete number of the pulse bursts, so it is capable of avoiding polluted frequency bands in the 

frequency domain and transient interference in the time domain. Inspired by stepped frequency 

waveform [5], the HRRPs can be generated by applying the inverse fast Fourier transform (IFFT) to 

a burst of sub-pulses of a coarse range cell, with missed frequency bands filled by zeros. 

Subsequently, the Doppler frequency of targets can be obtained by applying fast Fourier transform 

(FFT) to the bursts of high resolution range cells with missed bursts filled by zeros. Unfortunately, 

the bandwidth discontinuity introduces high range sidelobes which may degrade the detection 

performance. Meanwhile, the deficiency of time samples may cause difficulties in conventional 

Doppler analysis. 

High Resolution 2D Reconstruction Via CS 

Consider a K -sparse discrete signal s  of length N  under an appropriate basis Φ , K N . It 

makes sense that we should only have to measure a signal ( log )M O K N  times instead of N  

[6-7]. Applying a linear measurement process to s , we have y = ΑΦs + n Ψs + n , where Α  is a 

random measurement matrix, Ψ  is defined as the dictionary of size M N , and n  is additive 

noise. The CS theory indicates that accurate recovery of s  is possible if the matrix Ψ  has 
optimal restricted isometry property (RIP) [8].  

Unlike the traditional method of obtaining the HRRPs and Doppler frequency of targets 
separately, we attempt to obtain them simultaneously via CS. Assuming that the number of targets 

is small, the signal can be regarded as sparse in the RD plane. Let rs csM N N , r cN N N ; by 

reshaping the signal (2) into a vector and taking the noise into account, we express the 

measurements as follows:  
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where ( )f m  is randomly distributed over 0 0[ , ]f f B , ( )n m  is the noise, and ( )m rt G m T  

represents the sampling instant of the m th sub-pulse we used, ( )G m  is selected from [0 : ]rs cN N . 

The synthetic bandwidth is B , and the high resolution range cell is defined as / 2R C B  . The 

Doppler and velocity resolution are defined as 1/d rs r cf N T N   and / 2dv f    , respectively, 

where 

  is the wavelength. Then the dictionary can be constructed as: 
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 , which represents a target’s delay of the sampling instant 

mt  with velocity v j   within the i th high resolution range cell. The dimension of dictionary Ψ  

is M N  and M N . As indicated in [7-8], the RIP holds for Ψ  generally. The target scene can 

be reshaped as an 1N   sparse vector s  which represents the target distribution in the RD plane. 
This way the modified optimization problem with constraint to estimate the HRRPs and Doppler 
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frequency becomes: 

 
1

min 's  , subject to 
2
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where 
p

  denotes 
pl  norm and  min   denotes minimization, '

s  represents the estimated 

vector of s , and   is the noise level which should be estimated precisely for good reconstruction 
[8]. Both convex optimization and greedy algorithms can be applied to solve the norm optimization. 

After reshaping '
s  into a 2D grid, the HRRPs and Doppler frequency are obtained.  

Results and Discussion 

In this section, the proposed algorithm was evaluated using simulated and experimental data. 

 

Table 1  Parameters of a 2D sparse signal for simulation 

rT  
0f  

rB  B  rN  
rsN  

cN  
csN  

10m

s 

10MH

z 
10KHz 

320K

Hz 
32 16 32 16 

In our simulation, the parameters of a 2D sparse signal are listed in Table I. A target scene 

consisting of five targets with 32 32r cN N    grids is presented in Fig. 1(a). Only half of the 

sub-pulses and half of the bursts are randomly selected for reconstructing the target scene. The 

signal-to-noise ratio (SNR) is set at 10dB after sub-pulse stretch processing. Fig. 1(b) shows the 2D 

recovery by constructing the dictionary Ψ  according to (4) and solving the optimization of (6). 

Five targets are clearly resolved in the RD plane with noise and sidelobes suppressed to a low level. 
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(a)                                 (b) 

Figure 1.  Target scene reconstruction  

(a) original targetscene  (b) recovered target scene with SNR=10 
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(a)                                  (b) 

Figure 2.  Comparison of the results of different methods 

(a) HRRPs for target 1,2 and 3  (b) Doppler fortarget 2,4 and 5 
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Fig. 2(a) demonstrates the reconstructed HRRPs of target 1, 2 and 3 compared with the results of 

IFFT with the full number of sub-bands and half of the sub-bands, respectively. It is obvious that 

the traditional method suffers from high sidelobes, whereas the proposed method can effectively 

suppress the sidelobes to -38dB. Fig. 2(b) depicts the recovered Doppler frequency of target 2, 4 

and 5 compared with the traditional FFT Doppler analysis with the full number of bursts and half of 
the bursts, respectively. It can be shown that the targets are resolved with the peak sidelobe at 

-34.5dB, whereas with -5dB and -18dB for FFT with half of the bursts and all the bursts, 

respectively. The proposed approach exhibits good performance in sparse bandwidth synthesis and 

temporal coherence preservation. An additional benefit from sparse signal estimation by using CS is 

that the noise and sidelobes are effectively suppressed. 

 
The proposed algorithm was also evaluated using the experimental data from an S-band step 

frequency radar. 32cN   pulse bursts are transmitted. And each burst contains 128rN   pulses. 

The PRF 1rf KHz , the carry frequency 0 2.4f GHz , and the step frequency 1f MHz  . And the 

synthetic bandwidth 128B MHz . To validate the proposed algorithm, 16csN   pulse bursts are 

randomly selected, and in each burst 64rsN   pulses are randomly adopted. There is a target in the 

testing range cell with the velocity of 21m/s. The dictionary Ψ  is constructed according to (3)-(5). 

The length of Doppler sequence is set as 32cN  . And rs csM N N , r cN N N . Thus the dimension 

of dictionary is 1024 4096rs cs r cM N N N N N     . In order to improve the computational efficiency, 

we use Orthogonal matching pursuit (OMP) algorithm to solve the optimization problem in (6). In 

each iteration of the OMP, we get a group of indexes of fine range bin and velocity cell 

simultaneously. Then we can obtain the high range profile and Doppler frequency exactly. Figure 3(a) 

depicts the comparison of the high range profile by IFFT with full data ( r cN N  pulses) and OMP 

optimization. The blackish green line demonstrates the CS reconstruction of range profile. While the red line 
and blue line show the high range profile by IFFT without or with motion compensation when the velocity of 

target is preset to 21m/s. Figure 3(b) depicts the comparison of the high range profile by FFT with partial 

data ( rs csN N  pulses) and OMP optimization. The blackish green line demonstrates the CS reconstruction 

of range profile. While the red line and blue line show the high range profile by IFFT without or with motion 

compensation, with the missing data zero-padded. Compared with Figure 3(a), the distortion of the spectrum 
of target is more serious because of target’s motion. Meanwhile the level of noise and sidelobe is higher than 

figure 3(a) due to data missing of some pulses. CS reconstruction can significantly focus the target’s 
spectrum and reduce the granting sidelobes, which is helpful for further analysis of detection of small 

moving targets. More importantly, using CS reconstruction, we can estimate the Doppler frequency and high 

range profile simultaneously. 
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  (a)                                                  (b) 

Figure 3.  Real data results (a) CS result compared with IFFT 

with full data (b) CS result compared with IFFT with partial data 
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Conclusions 

A general high resolution RD reconstruction method for 2D sparse signal of HF radar is presented. 

HRRPs and the Doppler frequency are simultaneously reconstructed precisely with noise and 

sidelobes supressed. The effectiveness of proposed method is validated by simulation and 
experimental results. 
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