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Abstract-This paper focused on a series of agglomeration 
multigrid techniques for the numerical solution of the 2D/3D 
Reynolds Averaged Navier-Stokes equations on cell-centered 
unstructured grids, which conform with FVM discretization 
scheme. We explore a new agglomeration strategy to 
automated generate coarse grids for multigrid methods, which 
can conduct to 2D/3D unstructured/hybrid grids. The 
algorithm based on face weighting, fuse the strongest coupled 
neigh-bor face to form a new cell in coarsen grid once at a time. 
The numerical results which conduct on NACA0012 airfoil 
indicate that nearly optimal computational complexity, this 
method also shows better complexity than the listed method 
owing to the better quality of the coarse grid. 
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I.  INTRODUCTION 

The development of robust and efficient algorithms for 
explicit and implicit solution of Reynolds Averaged Navier-
Stokes equations in unstructured grids is an active research 
topic. Multigrid methods are among the fastest numerical 
algorithms for the solution of large sparse systems equations. 
A key issue for using multigrid is the generation of the 
coarse grid levels. 

Over the last few years, three different approaches can 
be adopted for generate unstructured multilevel girds 
process. The first one begins with a coarse mesh to generate 
finer grid by refinement [1]; the second approach uses non-
nested unstructured grids as coarse grids [2,3], which are 
generated independently using any given gird generation 
strategy; For complex geometries, especially in 3D, the 
above two methods construct coarse grids that faithfully 
represent the complex geometries can become a difficult 
proposition. The third to generate coarse grids through 
agglomeration, which is first introduced by Lallemand [4] 
and Smith [5], circumvents this problem by using heuristics 
to fuse the control volumes for the cell or vertex. Several 
improvements [6-9] have been made to agglomeration grids 
in order to optimize the fused cells according to a surface to 
volume ratio and coarsening ratio between different grid 
levels. Other improvements [10,11] need additional 
knowledge about the cell types of the primary grid for the 
agglomerated volumes. For inviscid transonic flow, the 
theoretically convergence rate for isotropic agglomeration 
multigrid can be achieved. However. for high Reynolds 
number Navier-Stokes problems with highly stretched grids, 
the efficiency of multigrid will broken down. Mavriplis [12] 
has demonstrate an algorithm coupling with directional-

coarsening and line-implicit smoothing to improve viscous 
conver-gence rate. Directional agglomeration restrict 
merging directions with edge coefficients on highly 
stretched grids. Many reference [12-15] demonstrate the 
best features for directional-coarsening grid generator and 
the method in present work is also inspired by this 
techniques.  

In this manuscript, we develop a heuristic strong 
coupled agglomeration technique, designed for cell-centered 
control volumes and finite volume scheme multigrid method, 
which can produce better quality in coarse grid shape for 2D 
and can be easily extended to 3D. Finally, the approach is 
compared with the isotropic [4], surface to volume ratio [6] 
based improvement and directional coarsened [12] multigrid 
algorithm for solving Navier-Stokes equations, which 
provide better conver-gence acceleration. 

II.  GOVERNING EQUATIONS AND DISCRETIZATION 

The Reynolds Averaged Navier-Stokes equations in 
integral form for 3D compressible steady flows can be 
expressed as 

( ) 0i i id n d
t

∂ ⋅ + − ⋅ =
∂  Q V F G S           (1) 

Where V is the control volume, S is cell's surface area 
and n  is the unit outward vector normal to the surface area. 
Q  is the vector of the conservation, F  is inviscid flux 
vector, G  is viscous flux vector, are defined by 
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Here ep,,ρ  denote the density, pressure, total energy, 
respectively, ijδ  is the Kronecker delta and iu is the velocity 
of the flow in the coordinate direction ix . the corresponding 
viscous stress tensor and the averaged heat flux is defined 
by 
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Here T  is the temperature of the fluid, k  is coefficient 
of heat exchange, μ is the viscosity coefficient. Using Cell-
Centered type system, equation (1) can be re-written in 
semi-discrete form as. 
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Where nf  is total faces number of the cell i , F  and 
G  are spatially discretized inviscid flux vector and viscous 
flux vector, s is normal area of the cell face. Equation (4) 
can be linearized in time as 
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III.  STRONG COUPLED AGGLOMERATION METHOD 

For equation (5), high Reynolds number Navier-Stokes 
problems with high stretched grids, which conducts huge 
difference in the coefficient of n

jΔQ . In the algebraic 
multigrid sense, which conduct anisotropic problems, will 
reduce the efficiency of isotropic agglomeration. Directional 
coarsening techniques can be considered for anisotropic 
problem involving highly stretched meshes, However, the 
memory usage of a directional coarsening combine with 
fully implicit solver grows rapidly with an increasing 
number of nodes, particularly in 3D. Except this, there will 
be more than one direction with the same weight, the user 
may be required to determine the merge direction. 

The present agglomeration algorithm uses a face weight 
take absolute value of face normal area ijs between cell i  
and cell j , which represents the degree of coupling in the 
discretization. For cell-centered finite volume scheme, this 
coarsening algorithm can be given as follows. 
Algorithm 1 (Strong Coupled Agglomeration) 
Input: Primary grid in cell set C 
            Strong/weak coupled threshold Γ  
Output: Coarsen grid in cell set G 
Initialization:  For all i computing each face weight ijw  

                          For all i , { \ | max }i ij ikS j C i w w= ∈ > Γ  

                          Sort set C by wall, far field, inner cell. 
Algorithm: While C ≠ ∅ do 
                    Select i C∈ , set { \ | }i ijN j C i w= ∈ ∃  

                    Select ij N∈ and max
iij k N ikw w∈=  

                    If ij S∈ , {( , )}G G i j=   

                    Otherwise, {( )}G G i=   

                    Update, \C C G=                      
In 2D ideally each coarse grid cell will be made up of 

exactly four cells, this approach will repeat in 2D to achieve 
favorite optimal performance of multigrid methods. The 
choice of selecting cell i C∈  is frontal type, begin with one 
of solid wall boundary, which we can choose the smallest 
volume cell, second by far field boundary. For singletons, 
which will fuse with its coarse neighbors. One efficient 
strategy  for this process is agglomerating with the smallest 
coarsening ratio neighbor. If more than one candidate 
remains, the singleton agglomerate to the coarse grid with 
the smallest volume. 

IV.  RESULTS 

We implement the present algorithm and compare with 
three agglomeration strategies. The notation is: 

Strategy I: The original algorithm which developed by 
Lallemand et al [4]. 

Strategy II: The geometrical algorithm developed by 
Venkatakrishnan and Mavriplis [6]. 

Strategy III: The directional coarsening developed by 
Mavriplis [12]. 

Strategy IV: The present new agglomeration algorithm.  
We test four algorithms on NACA0012 airfoil hybrid 

mesh with 18,501 points, 38,342 faces, 19,841 cells in 2D, 
which is shown in Figure.1. 

Four agglomeration approaches can produce four 
different types coarse levels. Figure.2-5 show three levels 
coarse grid produced by four algorithms. 

Strategy I implies that agglomerated cell is direct 
neighbours of the seed cell to produce a new coarsen grid 
cell. Strategy II implies that less stretched out control 
volumes are generated. Strategy III implies that cell 
agglomerate with the direct neighbours and anisotropic cell 
agglomerate with the most coupled cell. Strategy IV implies 
that the seed cell agglomerate with the most strongest 
coupled direct neighbour cell, the next seed selected by the 
frontal of the last choose one. 

As we know all, each coarse grid cell will be made up 
of exactly four fine grid cells in 2D ideally. Figure.6 depict 
the frequency distribution of the number of coarsen control 
volumes versus the coarsening ratio for four strategies. 

It is clear that Strategy I and Strategy III give poor 
control of the coarsening ratio, Strategy II and Strategy IV 
have a similar dispersion of the coarsening ratio, which all 
the levels of them with almost the same coarsening ratio. 
For more details about the four Strategies can refer to the 
Table I, which N stand for number of the cells at each levels, 
respectively, CR stand for the coarsening ratio. However, 
for Strategy II which produce the coarse grids without 
considering the anisotropic problems conducted by highly 
stretched grids, at this point Strategy III and Strategy IV will 
be very suit for high Reynolds number Navier-Stokes and 
highly stretched grids problems, but Strategy III have the 
memory usage grows rapidly with an increasing number of 
cells, particularly, in 3D situation the shape of cells conduct 
more complicate direction, So, Strategy IV relatively have 
the optimal computational complexity 
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Figure 1. NACA0012 2D airfoil initial hybrid grid 

 

 

Figure 2. Three levels of coarse grids generated by the agglomeration strategy I 

 

Figure 3. Three levels of coarse grids generated by the agglomeration strategy II 
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Figure 4. Three levels of coarse grids generated by the agglomeration strategy III 

 

 

Figure 5. Three levels of coarse grids generated by the agglomeration strategy IV 
 

 

Figure 6. The frequency distribution of the number of coarse control volumes versus the coarsening ratio for four strategies 

 

TABLE I. DETAILS ABOUT FOUR AGGLOMERATION STRATEGIES 

Levels 
Strategy I Strategy II Strategy III Strategy IV
N CR N CR N CR N CR

2 8378 2.37 4981 3.98 8331 2.38 5177 3.83

3 2587 3.24 1248 3.99 3238 2.57 1365 3.79

4 758 3.41 309 4.04 1230 2.63 360 3.79

5 214 3.54 82 3.77 444 2.77 101 3.56
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