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Abstract. Citrus huanglongbing disease is an important disease of citrus species, 

which leads to the change of chemical composition in leaves. The infrared technique 

may be advantageous to characterize the chemical differences between 

Huanglongbing infected and healthy leaves rapidly and nondestructively. In this study, 

the near-infrared spectra of citrus leaves were obtained in the field by using MicroNIR 

1700 Spectrometer, and then precision detection of citrus HLB-associated bacteria 

(Candidatus Liberibacter asiaticus, CLas) by RT-qPCR for verification. The method 

of Soft Independent Modeling of Class Analogy(SIMCA) and Partial Least Squares 

Discriminant Analysis (PLS-DA) was used to establish the qualitative discriminant 

models of HLB diagnosis, and using first derivative and Savitzky-Golay for further 

data processing. The results showed that the correct rejection rate of Principal 

Component Analyses (PCA) model of CLas-negative leaves was more than 80%, and 

correct recognition rate of CLas-positive leaves was more than 95% in different citrus 

orchards from the field. The correct rejection rate of PLS-DA model of CLas-negative 

leaves was more than 83%, and correct recognition rate of CLas-positive leaves was 

more than 99% in different citrus orchard from the field. Both models were well 

distinguished whether the citrus leaves were CLas-negative or CLas-positive(even if 

the citrus leaves was asymptomatic), which provided a new method for the rapid 

diagnosis and early warning of HLB in the field. 

Introduction 

Citrus huanglongbing (HLB) is caused by the phloem-limiting bacteria, Candidatus 

Liberibacter asiaticus (CLas). It is a devastating disease of citrus, also known as a 

serious threat to the citrus industry in worldwide, that has greatly affected citrus 

production and resulted in great economic losses [1]. Typical symptoms of CLas-

positive citrus trees are yellowing of leaves and shoots, with mottled or blotchy leaves. 

Fruit from CLas-positive trees are small and malformed, or asymmetric [2]. CLas-

positive citrus trees often act as a source of inoculum and cause further spread of the 

disease in field, for which no cure has been found. Therefore, rapidly identification 

and removal of CLas-positive trees are useful for reduce the spread of HLB in citrus 

orchards and economic losses. However, traditional field assessment based on 

characteristics symptom is difficult since they resemble other diseases (such as 

stubborn disease and tristeza) and nutritional deficiencies [3-5]. At present, laboratory 

techniques, such as polymerase chain reaction (PCR) provide accurate detection of 

HLB [6], but PCR is an expensive and time-consuming process. Therefore, an easy-
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to-use, fast, accurate, and inexpensive HLB diagnostic approach is greatly needed, 

especially for small growers to monitor their orchard and control the spread of the 

disease. 

Near-infrared spectroscopy (NIRS) detects the stretching and bending of CH, NH, 

and OH functional groups caused by the light absorption of organic molecules from 

350nm to 2500nm, and it has the potential to detect the chemical ―fingerprint‖ of a 

specific citrus leaves [7, 8]. Changes in spectral reflectance can indicate physiological 

stress in trees that result from the changes in photosynthetic pigments such as 

chlorophyll, carotenoids and other factors [9, 10]. The spectral reflectance from the 

tree canopy in the visible and infrared regions of the electromagnetic spectra can be 

used as an indication of plant stress. Spectroscopy in the range of visible and near 

infrared has been investigated for disease detection in a great variety of crops since it 

is a rapid and non-destructive tool that can be used in real-time crop assessment under 

field conditions [11]. 

With improvements in spatial, spectral and temporal resolution of remote sensing, 

multispectral imagery remains advantageous due to its real-time or near real-time 

imagery for visual assessment [12]. In another spectroscopy study, it was shown that 

the reflection of dried ground leaves in the mid-infrared band can be used to 

determine the HLB status of a sample with >95% accuracy [5]. Perez has 

demonstrated that Raman spectroscopy can be discriminated between orange plants 

HLB-positive and healthy plants with PCA–LDA analysis. The results of PCA–LDA 

analysis showed a sensitivity of 86.9%, a specificity of 91.4%, and a precision of 

89.2%. They proposed that Raman spectroscopy combined with PCA–LDA could be 

applied as a rapid pre-diagnostic methodology, which has the advantage of being a 

non-invasive optical technique. And it is easy to conduct and only requires a very 

compact set-up, meaning that it can be portable and produces immediate results [13].  

Based on previous studies, the present research aims to use the MicroNIR 1700 

Spectrometer with chemometrics analysis to establish qualitative discrimination 

models and find the best way to scan the spectrum, as a rapid and cost-effective way 

to determine whether plants (both symptomatic and asymptomatic) were CLas-

positive or not, as an alternative for rapid detection during the phytosanitary 

epidemiological surveillance activities, prior to undergoing molecular confirmatory 

DNA and RT-qPCR analysis. 

Materials and Methods 

Samples 

121 CLas-negative citrus leaves (including symptomatic or asymptomatic) and 176 

CLas-positive samples are used to establish models. All citrus leaves were picked 

from Citrus reticulate Blanco orchards of Guangzhou Fuhe (23°44′N, 113°69′E), and 

each tree was 6-years-old and about 250-300 cm tall. Each sample used in the 

experiment must be tested by RT-qPCR to determine whether it carries the CLas or 

not, the RT-qPCR components and conditions were those described by Li et al, and 

the primers HLBasf/HLBasr and the probe HLBp, which were designed to amplify the 

16S rDNA gene of CLas were used [14].The threshold cycle (Ct) from the PCR 

analysis indicates the presence or absence of CLas bacteria infected in leaves. Ct>32 

is considered as CLas-negative, while Ct<30 is considered CLas-positive. 

Data Collection 

The near-infrared absorption spectra of samples were collected by MicroNIR 1700 
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Spectrometer (JDSU Co., Ltd, American) with a steel plate as scanning background, 

0.5s scan speed of each sample in the wave number range of 910-1650nm. The steel 

plate was specially designed which has low spectral absorption, suitable reflectivity 

and refractive index. In this study, 6 different scanning methods were used to collect 

spectrum to find the most suitable method for leaves scanning of citrus leaves, they 

are front blade side, back blade side, front blade midrib, back blade midrib, front 

blade edge, back blade edge, respectively. Each scanning method was repeated 3 

times, and the near-infrared raw spectra of different citrus leaves are shown in Figure1. 

 

Data Analysis 

Preprocessing of The Spectra. The calibration and validation spectral datasets 

collected from samples were preprocessed before further analysis. The spectra of all 

samples were exported to The unscrambler software and divided per class samples 

into two groups, taking every alternate sample as calibration (training) set and 

remaining as validation (testing) set [15]. There have 101 calibration samples and 20 

validation samples of CLas-negative samples, at the same time, CLas-positive 

samples were divided into 133 calibration samples and 43 validation samples.  

The preprocessed (normalized) spectral reflectance data were used to calculate the 

first derivatives based on Savitzky-Golay filtering. This correction will bring the 

spectra to a common baseline by pulling out changes in the Y-axis and increases the 

signal-to-noise ratio [16, 17]. In Savitzky-Golay filtering, an unweighted linear least-

square fit based on polynomial equation is used to calculate the filter coefficients. 

Spectral regions dominated by noise were excluded. The Savitzky-Golay filtering 

performs data smoothing, in addition to calculating the derivatives. In the meantime, 

the number of principal components (PCs) is an important parameter that greatly 

affects discrimination results of NIRS models. Previous practices indicated that more 

complicated samples were more principal components needed [18], the model have 

maximum accuracy when meet suitable principal component number [18, 19]. Under-

fitting will occur when the number of principal components too low [20]. Usually, the 

symptoms of HLB were often considered as a complicated samples, which often 

confusion with the symptoms of nutrient deficiency. Therefore, 10, 15, 20 were used 

as the principal component number after repeated screening, and compared the 

prediction accuracy of the models in the experiment. Another factor that affects the 

quality of the model is smoothing point [14]. The selection of smoothing points is an 

essential step in Savitzky-Golay filtering. In the process of model building, the 

smoothing points also affected accuracy of the the models were found. At last, models 
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when the smoothing number was 3, 5, 7 and 9 under different PCs were established 

respectively.  

Different datasets were generated to determine the most suitable method for 

detecting CLas-positive samples. The datasets used were summarized as follows: raw 

data, a first derivatives and 3 smoothing point in Savitzky-Golay filtering (SG-1
st 

3 

smoothing point) dataset, a first derivatives and 5 smoothing point in Savitzky-Golay 

filtering (SG-1
st
 5 smoothing point) dataset, a first derivatives and 7 smoothing point 

in Savitzky-Golay filtering (SG-1
st
 7 smoothing point) dataset, a first derivatives and 

9 smoothing point in Savitzky-Golay filtering (SG-1
st
 9 smoothing point) dataset, 

derived from preprocessed raw data. And every dataset saved with different number 

of PCs (10, 15, 20), respectively. 

Chemometric Analysis. The initial examination of the average spectra showed 

considerable overlap between different species. In this study, the calibration samples 

was developed using principal component analyses (PCA) and partial least squares 

discriminant analysis (PLS-DA) including CLas-negative and CLas-positive using the 

leave-one-out cross validation samples.  

PCA (mean centred) full cross validation option and constant weight to all 

variables was performed to investigate clustering of samples in different groups [21]. 

In this study, PCA was then performed using the complete spectra (including all wave 

number ranges and subsets of these ranges), before and after pre-processing of 

spectral data. PLS-DA is performed using an exclusive binary coding. The predicted 

origins seldom lead to a binary result not exactly equal 0 or 1 but to a result near 0 or 

1, which is justified by the natural variability of the sample constituents. PLS-DA 

allows modeling several response variables (Y). In calibration datasets, the Y value of 

CLas-negative samples is ―0‖, while the Y value of CLas-positive is ―1‖ in this study. 

For PLS-DA, the values of root mean error of calibration (RMSEC), coefficient of 

determination (R
2
) and root mean square error of prediction (RMSEP) were used to 

identify a better calibration and validation. The RMSEC value is used as an indication 

of the uncertainty in the calibration model, while the R
2
 value and RMSEP were 

determined for the validation data sets in prediction samples [22]. In order to establish 

a more practical model, R
2
, RMESP and SEP were used in our PLS-DA model.  

The formula of R
2
 as in Eq. (1): 

                                                                                (1) 

where n is the number of spectra for the calibration, yi is the quantity of lipid 

present in the mixture corresponding to the spectrum i,yi is the quantity of lipid 

estimated by the model with spectrum i and y is the average of all reference 

measurements values in the calibration set.  

The formula of RMESP as in Eq. (2): 

                                                                                                  (2) 

 where np is the number of spectra in the prediction set, ypi is the quantity of lipid 

measured with another technique for spectrum i, y p1is the estimated amount of lipids 

y the model using spectrum i [22-25]. 
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Classification of Samples 

Soft Independent Modeling of Class Analogy (SIMCA), another multivariate 

classification model based on collection of PCA models, was used to predict class 

memberships using validation samples at 5% confidence interval level. SIMCA class 

models were interpreted based on class projections, misclassifications, discriminating 

power, and interclass distances. In SIMCA-based classification, as a part of model 

development, the PC scores were generated for each class based on the variation in 

each class, rather than utilizing the overall variation in the data. The models residuals 

were then used for classification of unknown samples [2]. 

Different PCA models were established by different type of samples and 

parameters, the calibration datasets of CLas-negative samples and CLas-positive 

samples were respectively established their PCA models. Validation datasets of CLas-

negative samples and CLas-positive samples were put into its corresponding PCA 

models, counted results to determine the best model and best preprocess parameters, 

and the most suitable method for the spectra scanning of citrus leaves. Different from 

SIMCA, one PLS-DA model with two types of calibration datasets but different 

parameters was just need established. Then validation datasets were put into PLS-DA 

model, and counted results to determine the best model and the best preprocess 

parameters. 

Field Applicability Verification 

Two different citrus orchards samples were applied to verify the model applicability 

of the field, and each orchard by five point random sampling method for sampling. 

East, West, South, north and Middle, each azimuth represents a point. Collecting 33 

samples in each of azimuth, each of the citrus orchards were sampled 165, and two 

citrus orchards were sampled 330. The results of RT-qPCR showed that 297 were 

CLas-positive, while 33 were CLas-negative. After preprocessing the NIRS of these 

samples, then input PCA model and PLS-DA model for classification, respectively. 

Statistical Analyses 

The data were analyzed using SPSS software version 17.0 (SPSS Inc., Nie et al, 

Chicago, IL, USA), and the Unscrambler 9.8 software. In this study, correct 

recognition rate and correct rejection rate were used to evaluate the predictive ability 

of the PCA model. The higher the correct recognition rate and the correct rejection 

rate, the better the prediction ability of the model.  

Correct recognition rate= Nr / N1 ×100% 

Correct rejection rate= Nre / N2 ×100% 

Nr-correctly identify the sample number of the sample itself; N1-the number of 

samples from the same source; Nre-correctly reject the number of samples from other 

sources; N2-the number of samples from other sources. 

For PLS-DA model, the R
2
, RMSEP and SEP were used to identify its quantitative. 

R
2
 closer to the 1, the relationship between the predictive value and the real value of 

the correction model is better. The lower and closer of the RMSEP and SEP value, 

indicating the better the performance of the model is and the higher the prediction 

accuracy [21, 24, 27]. 
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Results and Discussion 

Classification Results of PCA Model 

As shown in Figure 2, the green area represented the CLas-negative samples, red area 

represented CLas-positive samples. The visual of PCA model can distinguish between 

CLas-negative and CLas-positive samples. Description of the above two types of 

calibration datasets has the basic ability of discriminant analysis, which can verify the 

validation samples, and then calculate the specific classification accuracy. 

 

Fig. 2. The 3D models of calibration datasets 

The classification results of PCA models under different scanning methods and 

different spectral pretreatment methods were shown in Table 1. After SG first 

derivative processing, in addition to the back blade edge method, the maximum 

correct recognition rate of the other scanning methods were all more than 79%. 

Among them, the back blade midrib scan method for spectra data by SG-1
st
 3 

smoothing point, when PCs value was 10, 15 and 20, the correct recognition rate was 

high up to 96.83%. The model classification accuracy of all the parameters in the back 

blade midrib scan mode was above 87%, and the overall classification accuracy was 

more than 93% after SG first derivative preprocessing. At the same time, although the 

front blade edge method for SG-1
st 

5 smoothing point, when PCs value was 10, the 

correct recognition rate was also 96.83%. However, the classification accuracy will 

reduce when the PCs was changed, indicated that the change of the PCs has great 

influence on the classification ability of the model, and the stability of the PCA model 

under this parameter was not good. The classification accuracy of the back blade 

midrib scanning method was the highest. The results showed that the difference PCs 

were not affected the model's classification ability, so the stability of the PCA model 

was the best one with respect to the other scanning method and preprocess parameters.  

Related research also showed that the CLas was first through the petiole infect 

midrib, then harm leaves and finally influence of diseased trees overall development, 

and under-fitting will occur when the number of PCs too low and the number of PCs 

too high will lead to over-fitting. Therefore, the back blade midrib scanning method 

was the optimal and the SG-1
st
 3 smoothing point and15 PCs was the best preprocess 

parameter. 
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Table 1. The results of PCA models with different scanning and prepossessing methods 

Prepossessing parameter 

Correct recognition rate (%) 

Front 

blade 

side 

Back blade 

side 

Front 

blade 

midrib 

Back 

blade 

midrib 

Front 

blade 

edge 

Back 

blade 

edge 

SG-1st 

derivative 

Smoothingb=3 

PCsa =20 68.25 69.84 65.08 96.83 93.65 9.52 

PCs =15 69.84 68.25 65.08 96.83 93.65 9.53 

PCs =10 71.43 66.67 65.08 96.83 93.65 9.52 

Smoothing=5 

PCs =20 74.60 88.89 79.37 95.24 95.24 25.40 

PCs =15 74.60 88.89 79.37 95.24 95.24 25.40 

PCs =10 74.60 88.89 79.37 95.24 96.83 25.40 

Smoothing=7 

PCs =20 76.19 88.89 82.54 95.24 95.24 30.16 

PCs =15 76.19 87.30 82.54 95.24 95.24 30.16 

PCs =10 76.19 90.48 82.54 95.24 95.24 30.16 

Smoothing=9 

PCs =20 79.37 92.06 77.78 93.65 95.24 34.92 

PCs =15 79.37 90.48 77.78 93.65 95.24 34.92 

PCs =10 79.37 90.48 77.78 93.65 95.24 33.33 

Raw data 

PCs =20 63.49 87.30 73.02 87.30 63.49 47.62 

PCs =15 63.49 87.30 73.02 87.30 63.49 47.62 

PCs =10 63.49 87.30 73.02 87.30 63.49 47.62 

Note: Table notes. 

PCsa means the number of principal components of PCA model. 

Smoothingb means the number of smoothing points. 

Classification Results of PLS-DA Model 

The spectral data of the optimal scanning method (back blade midrib scan method) 

was obtained in 3. 1, then PLS-DA analysis was carried out, and the model was 

optimized to determine the qualitative discriminant model of PLS-DA. After 

processing the raw data by PLS-DA method, the CLas-negative samples and CLas-

positive samples were correctly classified by the models (Fig. 3). Because the R
2
 

value closer to the 1, and the lower the RMSEP value, the closer the RMSEP and SEP 

value, indicating the better the performance of the model is and the higher the 

prediction accuracy. After the SG-1
st
7 smoothing point preprocess, the R

2
=0.970317, 

RMSEP=0.080198, SEP=0.074656, the validation datasets classification accuracy up 

to 100%, compared with other groups, the result was more satisfied with the model 

evaluation criteria. So the best preprocess parameter for optimal PLS-DA model was 

the SG-1
st
7 smoothing point and 15 PCs. 

Table 2. The results of back blade midrib scan with different prepossessing parameter (PLS-DA). 

Prepossessing parameter R2 RMSEP SEP 

SG 1stderivative 

Smoothinga=3 0.931313 0.121996 0.079807 

Smoothing=5 0.940347 0.113691 0.110176 

Smoothing=7 0.970317 0.080198 0.074656 

Smoothing=9 0.967320 0.084150 0.080602 

Raw data 0.964341 0.087901 0.074843 

Note: Smoothinga means the number of smoothing points  
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Fig. 3.Prediction map of PLS-DA model under the best parameters of back blade midrib scan 

The Applicability of the Model in the Field Verification 

The samples of two different citrus orchards were preprocessed according to the 

optimum parameters for PCA and PLS-DA model, and then carried on the 

classification analysis (Table 3). The classification results of PCA and PLS-DA model 

showed that the correct recognition rate was all above 95%, the highest reached 100%, 

meanwhile the correct rejection rate was all above 80%, and the maximum is 86.67%. 

The high classification ability of the two models was proved. Whether the correct 

rejection rate or correct recognition rate, the correct verification rate of the two 

orchards used PLS-DA model were all higher than that of the PCA model, indicating 

that the discriminant analysis ability of PLS-DA model was better than that of the 

PCA model.  

At the same time, comparing the classification results of two models and the actual 

results of RT-qPCR detection, in order to determine the applicability of the two 

models, the chi-square test were carried out to classification results of the field and the 

actual results of RT-qPCR detection. The results displayed that there no significant 

difference between the results of RT-qPCR detection and both PCA and PLS-DA 

models classification (p>0.05). It suggested that the samples could be correctly 

classified by PCA and PLS-DA models in field. 

Table 3. Verification results of different citrus orchards 

Samples 
Correct rejection rate (%) Correct recognition rate (%) 

PLS-DA PCA PLS-DA PCA 

No.1 orchard 86.67  80.00  99.33  95.33  

No.2 orchard 83.33 83.33  100.00  97.28 

Conclusions 

Rapid diagnosis of HLB in field is the precondition for HLB control. The application 

of MicroNIR 1700 Spectrometer in conjunction with chemometric analysis (SIMCA 

and PLS-DA) of spectral data to predict the presence HLB of citrus leaves was 

investigation in this study. The results indicated that statistical classifier models such 

as PCA and PLS-DA could distinguish between CLas-negative and CLas-positive 

leaves with high classification accuracies of greater than 80%, maximum up to 100%. 

Comparison of multiple experimental results, we found the classification accuracy and 

discriminant analysis ability of PLS-DA model was better than that of the PCA model, 

and the most suitable method of near infrared spectrum scanning method was also 

found(the back blade midrib scan method). It indicated that MicroNIR 1700 

Spectrometer has potential to detected HLB with optimal model and the best 
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preprocess parameter for data, even if the citrus leaves was asymptomatic CLas-

positive.  

However, the evaluate of applicability of MicroNIR 1700 Spectrometer in 

predicting different commercial citrus species that easily infected with HLB disease, 

and the quantity of CLas in each disease samples with quantitative models were also 

necessary. Some of these aspects would be involved in the future studies. 

Acknowledgments 

The present research is financially co-supported by projects of Guangdong Science 

and Technology Plan (2014A040401072) and Guangdong Engineering Research 

Center for Insect Behavior Regulation (2015B090903076). 

References 

[1] K. R. Chung, and R. H. Brlansky, Citrus diseases exotic to Florida: 

Huanglongbing (citrus greening), Plant Pathology Department Fact Sheet pp-210, 

Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, 

University of Florida, http://edis. ifas. ufl. edu/pp133 (2005). 

[2]  S. Sankaran, A. Mishra, J. M. Maja, and R. Ehsani, Visible-near infrared 

spectroscopy for detection of Huanglongbing in citrus orchards,Comput Electron 

Agr77, 127-134 (2011). 

[3] S. E. Halbert, K. L., and Manjunath, Asian citrus psyllids (Sternorrhyncha: 

Psyllidae) and greening disease of citrus: Aliterature review and assessment of risk in 

Florida, Florida Entomological Society 3, 330-353 (2004). 

[4] S. A. Hawkins, B. Park, G. H. Poole, T. R. Gottwald, W. R. Windham, J. 

Albano, and K. C. Lawrence, Comparison of FTIR Spectra between Huanglongbing 

(Citrus Greening) and Other Citrus Maladies, J Agr Food Chem 58, 6007-6010 (2010). 

[5] W. Li, J. A. Abad, R. D. French-Monar, J. Rascoe, A. Wen, N. C. Gudmestad, 

G. A. Secor, I. Lee, Y. Duan, and L. Levy, Multiplex real-time PCR for detection, 

identification and quantification of ‗Candidatus Liberibacter solanacearum‘ in potato 

plants with zebra chip, J Microbiol Meth 78, 59-65 (2009). 

[6]  J. S. Shenk, J. J. Workman, and M. O. Westerhaus, Application of NIR 

spectroscopy to agricultural products, Practical Spectroscopy Series 27, 419-474 

(2001). 

[7]  C. Pasquini, Near infrared spectroscopy: fundamentals, practical aspects and 

analytical applications, J Brazil Chem Soc14, 198-219 (2003). 

[8] J. H. Everitt, and D. E. Escobar, The status of video systems for remote sensing 

applications, in Proc.of 12th Biennial Workshop on Color Photography and 

Videography in the Plant Sciences and Related Field, pp. 6-29(1989). 

[9]  J. H. Everitt, D. E. Escobar, I. Cavazos, J. R. Noriega, and M. R. Davis, A 

three-camera multispectral digital video imaging system, Remote Sens Environ 54, 

333-337 (1995). 

[10]  S. Sankaran, A. Mishra, R. Ehsani, and C. Davis, A review of advanced 

techniques for detecting plant diseases, Comput Electron Agr 72, 1-13 (2010). 

82



 

[11] S. Sankaran, J. Maja, S. Buchanon, and R. Ehsani, Huanglongbing (Citrus 

Greening) Detection Using Visible, Near Infrared and Thermal Imaging Techniques, 

Sensors 13, 2117-2130 (2013). 

[12] M. R. V. Perez, M. G. G. Mendoza, M. G. R. Elias, F. J. Gonzalez, H. R. N. 

Contreras, and C. C. Servin, Raman Spectroscopy an Option for the Early Detection 

of Citrus Huanglongbing, Appl Spectrosc (2016). 

[13] W. Li, J. S. Hartung, and L. Levy, Quantitative real-time PCR for detection and 

identification of Candidatus Liberibacter species associated with citrus huanglongbing, 

J Microbiol Meth 66, 104-115 (2006). 

[14] L. Zhang, X. Zhang, L. Ni, Z. Xue, X. Gu, and S. Huang, Rapid identification of 

adulterated cow milk by non-linear pattern recognition methods based on near 

infrared spectroscopy, Food Chem 145, 342-348 (2014). 

[15]  B. Schrader, Infrared and Raman spectroscopy: methods and applications (John 

Wiley & Sons, 2008). 

[16] A. Savitzky, and M. J. Golay, Smoothing and differentiation of data by 

simplified least squares procedures, Anal Chem 36, 1627-1639 (1964). 

[17] P. Ciosek, Z. Brzozka, W. Wroblewski, E. Martinelli, C. Dinatale, and A. 

Damico, Direct and two-stage data analysis procedures based on PCA, PLS-DA and 

ANN for ISE-based electronic tongue—Effect of supervised feature extraction, 

Talanta 67, 590-596 (2005). 

[18] B. Worley, S. Halouska, and R. Powers, Utilities for quantifying separation in 

PCA/PLS-DA scores plots, Anal Biochem 433, 102-104 (2013). 

[19]  P. Jaiswal, S. N. Jha, A. Borah, A. Gautam, M. K. Grewal, and G. Jindal, 

Detection and quantification of soymilk in cow–buffalo milk using Attenuated Total 

Reflectance Fourier Transform Infrared spectroscopy (ATR–FTIR), Food Chem 168, 

41-47 (2015). 

[20] Q. Chen, P. Jiang, and J. Zhao, Measurement of total flavone content in snow 

lotus (Saussurea involucrate) using near infrared spectroscopy combined with interval 

PLS and genetic algorithm, Spectrochimica Acta Part A: Molecular and Biomolecular 

Spectroscopy 76, 50-55 (2010). 

[21] G. Erik, and R. Jean-Marie, Subtraction of atmospheric water contribution in 

Fourier transform infrared spectroscopy of biological membranes and proteins, 

Spectrochimica Acta Part A: Molecular Spectroscopy 50, 2137-2144 (1994). 

[22] Y. Tominaga, Comparative study of class data analysis with PCA-LDA, 

SIMCA, PLS, ANNs, and k-NN, Chemometr Intell Lab 49, 105-115 (1999). 

[23] Z. Xiaobo, Z. Jiewen, M. J. W. Povey, M. Holmes, and M. Hanpin, Variables 

selection methods in near-infrared spectroscopy, Anal Chimacta 667, 14-32 (2010). 

[24] O. Anjos, M. G. Campos, P. C. Ruiz, and P. Antunes, Application of FTIR-ATR 

spectroscopy to the quantification of sugar in honey, Food Chem 169, 218-223 (2015). 

[25] A. Derenne, O. Vandersleyen, and E. Goormaghtigh, Lipid quantification 

method using FTIR spectroscopy applied on cancer cell extracts, Biochimica et 

83



 

Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1841, 1200-1209 

(2014). 

84




