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Abstract. Because of its simple experiment design and low experiment cost, label-free 

quantitative technology based on mass spectrometry analysis is being used more and more 

widely. Aiming at peptide identification and quantification, which are pivotal step of the 

label-free quantitative analysis, we develop an efficient algorithm named XIC Finder based on 

C++ platform. In term of the peptides which failed to be identified by MS/MS spectrum, we 

utilize ESP model trained by 20 optimized peptide features with Random Forest method, to 

predict those peptides detectability and chose the highest scored peptide as the correct 

peptide. Compared with MaxQuant and IDEAL-Q, other algorithms developed for 

quantitative MS data, XIC Finder improves the performance of the peptide identification and 

quantification significantly. Furthermore, we evaluated the reproducibility and precision of XIC 

Finder by using the replication dataset and the UPS1 standard data set respectively and prove 

the result is better than other algorithms. 

Introduction 

The Human Genome Project (HGP) [1], which called the program of ―Apollo Moon 

Landing‖ in life science research, was declared complete in 2003. Life science has gone into 

the post-genome era, and the focus has transferred from genetic information discovery to 

functional analysis [2]. Comprehensive proteomics study will become an important field of life 

science in the twenty-first century. Proteome attempts to character the expression of the full set 

of proteins for a biological sample under defined conditions qualitatively and quantitatively. 

Because of its high throughput, sensitivity and resolution for analytes, liquid chromatography 

coupled to tandem mass spectrometry (LC-MS/MS) [3] is widely used in quantitation 

proteomics. With the development of mass spectrometry recently, such as Orbitrap, a large 

number of high-precision data are produced and increase the complexity of quantitative 

analysis [4]. 

Quantitation techniques in proteomics are divided into relative quantitation and absolute 

quantitation [5, 6], and relative quantitation which can find differentially expressed proteins is 

widely used in clinical medicine. Discovery proteomics, also named Shotgun is the classic 

experiment strategy in relative quantitative proteomics [7], which contains four main steps: 1) 

Sample extraction and Digestion. Sample proteins are digested by trypsin and converted by 
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proteolysis into peptides. 2) Analysis by LC-MS/MS. Peptides analyzed by LC-MS/MS 

produce profile spectrum, then the most abundance peptides detected in MS1 scan are 

selected for fragmentation. 3) Database search. The fragment ion spectra are assigned to their 

corresponding peptide sequences by database searching software, such as Mascot and 

X!Tandem [8, 9, 10]. 4) Peptides and proteins quantitation. Based on the former results, 

peptides and proteins quantitation are processed with relevant mathematical and statistical 

analysis methods. 

Peptide identification and quantitation is essential procedures in quantitation proteomics. 

Through searching database of theoretic spectrum, peptides selected for fragmentation can be 

identified, and the rest peptides can be searched by accuracy mass and time tag (AMT) library 

[11] for identification in this article. In peptide quantification step, the performance of the 

algorithm which estimates peptide abundance by the area under the curve of extracted ion 

chromatogram is proved feasible. Thus, ion chromatogram extraction in MS1 scan is 

fundamental procedure for peptide quantification [12].  

Data and Method  

Datasets 

Five kinds of samples (including samples A-E) were analyzed in the LTQ-Orbitrap mass 

spectrometery, a sample of each experiment was repeated three times technologically. 

Samples consist of yeast proteins and 48 UPS1 standard proteins, where the amount of 

60ng/µL USP1 protein in the sample A-E were 0.24, 0.74, 2.2, 6.7 and 20 fmoles 

respectively [13]. Such protein samples can simulate the actual sample of the protein under 

different conditions of this difference in expression. The data set can be downloaded freely on 

Proteome Commons server, and the Hash number is 

‗zccpb0hwGbgThe8AQOCJbOFqUir7erYp0w49UVqqmx1jlQM8xUEjzX99chJMfzYPlp

UkSmjAqPsTVVoo+YAAAAAAAAgZQ==‘. 

Through Trans-Proteomic Pipeline v4.4, RAW files is converted MGF files [14], which can 

be searched by database searching software. The setting parameters used by 

Mascot Demon v2.2 to perform database searching were as follows: 1) Mass tolerance of 

precursor and fragment ions is 10ppm and 0.5Da respectively. 2) Complete digestion with 

trypsin. 3) Fixed modification is Carbamidomethyl of amino acid C, and variable modification 

is oxidation of amino acid M. 

Peptide Feature Extraction and Prediction on Peptide Detectability 

Physical and chemical properties of peptides are important factors influencing peptide 

detectability [15]. However the extreme complexity of peptide properties, including the mass 

and length, isoelectric point, hydrophobicity and hydrophilicity of peptides, consists of 550 

feature vector [16]. After correlation analysis, we found that the physical and chemical 

characteristics of peptides contain numerous highly correlated features—these redundant 

information will increase complexity and difficulty in process of data analysis. We use Principal 

Component Analysis (PCA) for feature extraction, which can greatly reduce the complexity of 

data analysis. PCA algorithm uses Schmidt orthogonal transformation, which can convert the 

relevant variables to the linearly independent variable [17]. 
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Based on properties of peptides, we establish predicting model of peptide detectability 

named ESP via Random Forest method, which is one of the efficient Machine Learning 

methods [18]. The larger number of decision trees are, the higher accuracy of prediction is, but 

the time of model training will be longer as well. If you use 50000 decision trees, the model 

construction takes about 12 hours. Using R language pack of Random Forest algorithm, we 

select the 500 decision trees to ensure sufficient accuracy and make the training time reduced. 

We select the peptide data set" TRAIN- TEST_ yeast_ CPTAC_ HighLowND_ z-1_0_ 

AVG_AADB2_110607.csv" as the training set which has 3153 identified peptides, including 

550 kinds of physical and chemical properties. 

The Kernel of XICFinder Algorithm 

In discovery proteomics, the mass spectrometry instrument is operated on 

data-dependent-acquisition (DDA) mode [19], where several precursor ions detected in a 

MS1 scan are selected for fragmentation. DDA technology is limited by its stochastic 

acquisition, however, it doesn‘t mean that the rest peptides in the MS1 scan can‘t be identified, 

but the low MS2 sampling rate cause numerous peptides failed to be identified. 

In principle, XICFinder finds all the possible extracted ion chromatograms (XICs) from the 

MS spectrums firstly. By means of database searching and peptide detection predicting, 

XICFinder carry through peptide identification and quantification respectively, where peptides 

are represented by XICs and the area of XIC is considered as the corresponding peptide 

quantitation value. XICFinder consists of six modules, and utilizes three main C++ Class to 

process MS data analysis. Class IdxRaw can read the Raw file and detect XICs initially trough 

invoking class MSInf, which stores relevant information of MS spectrums. XICFinder invokes 

API of Xcalibur to read MS information, and use the similarity of the m/z in the mass tolerance 

(defaulted 50ppm) and isotope matching to find the same peptide among MS. Then, we 

extracted intensity of the same peptides based on RT and combined them into a XIC. Class 

MResult is designed for peptide identification, which invokes API of MSparse to read the 

result of Mascot searching contained identified information of peptides selected for 

fragmentation. The rest peptides corresponding to XICs but not identified by MS/MS 

spectrums are compared with theoretical tryptic peptides, and develop lists for the candidate 

peptides. Then, we utilize the ESP model that can predict peptides detection to classify the 

candidate peptides, after multiple matches, we chose the highest scored peptide as the correct 

peptide in correspondence to the XIC. 

Results and Discussion 

Peptide Feature Extraction Based on Principal Component Analysis 

Based on the R language platform, using principal component analysis, physical and chemical 

properties of 550 peptides were extracted and optimized. We calculate the linear combination 

of the original variables, which become new linearly independent components pc1, pc2, 

pc3 … shown in Figure 1: 

132



 

Figure 1.  Scatterplots showing linear independence among the main component  

Then, we selected the top twenty principal components as the factor, which can reduce 

550 features to 20 factors and achieve 99% explanation. The relative results are shown in 

Figure 2. 

 

Figure 2.  Variance analysis of the main component (left) and cumulative explanation of number of 

components (right) 

Peptide Detectability Predicting Based on ESP Model 

In consideration of peptide that failed to be identified by MS/MS spectrum, XICFinder 

generate a list of candidate peptides corresponding to theory trypsin peptides via searching 

Accuracy Mass and Time tag (AMT) library. Furthermore, we apply the  established ESP 

model to predicting detectability of those candidate peptides. 

For instance, from 15.489min to 15.634min, XICFinder constructed a complete 

XIC(charge  +1, m/z 340.945, S/N 41.877) in Retention Time, which was not identified by 

Mascot database searching but by Accuracy Mass and Time tag (AMT) library searching. 

After multiple matching, we obtain a list of candidate peptides, where we chose the highest 

scored peptide by ESP model as the correct peptide corresponding to the XIC. 
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Results Analysis of Peptide Identification and Quantitation by XICFinder 

XICFinder performs well on peptide identification and quantitation respectively. In terms of 

the number of peptides identified only by XICs, the peptides identified by XICFinder are 

significantly more than peptides, which were identified by MaxQuant [20] and IDEAL-Q 

[21].The number of peptide identification by three algorithms is shown in Figure 3(left). 

XICFinder found 3798 XICs, and identified 2744 peptides—1470 peptides were identified 

by MS/MS spectrum and 974 were identified by AMT matches based on peptide 

detectability prediction. The identification rate of peptides is up to 72.4%, more than 

MaxQuant (61.5%) and IDEAL-Q (65.9%). However, ROC curve of XICFinder is slightly 

worse than MaxQuant due to its multiple AMT matches based on peptides detectability—this 

suggests that False Positive Rate (FPR) is higher than MaxQuant slightly, which is shown in 

Figure 3(right), and that will be the emphasis of the algorithm to advance in the future. 

 

Figure 3.  Comparison of peptide identification (left) and ROC curve (right) among three algorithms. 

In consideration of peptide quantification, we calculate the coefficient of variation of log2 

peptide abundance in 10 repeated experiments, and draw a box plot for further analysis as 

Figure 4. The mid-values of CV evaluated by three algorithms are 0.0147, 0.0195 and 0.0173 

respectively, which indicates the reproducibility of XICFinder is better than others.In view of 

the corresponding peptides of UPS1 Proteins, we need to utilize unary linear regression to 

analyze the linearity between five abundance estimates and actual sample loads. The linearity 

can be measured by Coefficient of Determination R-square of linear regression. The higher 

coefficient of determination is, the better the accuracy of quantitative result is. The mid-values 

of CD evaluated by three algorithms are 0.9843, 0.9806 and 0.9787 respectively, which 

indicates the accuracy of XICFinder is better than other algorithms. The relative results are 

shown in Figure 4. 

 

Figure 4.  Coefficient of Variation (left) and Coefficient of Determination (right) in peptide quantification  
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Conclusions 

Mass spectrometry analysis has become the core method for quantitative proteomics research, 

where peptide identification and quantitation is essential procedures. We develop relevant 

algorithm named XICFinder, which can identify about 72.4% peptides in ten repeated 

experiment. Furthermore, the higher coefficient of variation and coefficient of determination, 

which were calculated by identified peptides and UPS1 standard peptides respectively, 

indicates that the reproducibility and accuracy of XICFinder are better than MaxQuant and 

IDEAL-Q. 

The low identification rate of peptides is due to the low sampling rate resulted from 

data-dependent-acquisition (DDA) of the mass spectrometry instrument. Thus, 

data–independent-acquisition (DIA) has become the dominant technique gradually, which can 

make large scale MS2 quantitation available [22]. In DIA mode, peptides detected in MS1 

scan are all fragmented into MS/MS spectrums, which can be identified by database searching 

and quantify more peptides than DDA mode. 
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