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Abstract. In order to implement the high-efficiency resistance training for a specific muscle of 

human shoulders using the rehabilitation robots, a muscle-specific rehabilitation training 

method based on the optimal load orientation concept (OLOC) was proposed. A 3D 

mathematical musculoskeletal model of the shoulder complex was used to predict the muscle 

forces. In this model, 31 muscle bundles were used to represent all the muscles contributing to 

the shoulder function, and the Hill-type model was used to characterize the mechanical 

property of the muscles. The calculation results show that, for a specific muscle, there is always 

an optimal load orientation (OLO) of the external load which lead the activation of muscle to its 

maximum. Moreover, the distribution of the OLO is significantly consistent as the movement 

under different magnitudes of load. Thus the optimal load orientation cluster for a specific 

muscle, which can be used to specify a muscle-specific rehabilitation strategy, was determined. 

Simultaneously, the analysis suggests that the muscle-specific rehabilitation training method 

based on the OLOC could improve the training efficiency of specific muscles significantly.  

Introduction 

The shoulder complex was one of the most complicated functional regions of the human 

body, and it directly affected the performance of upper limb movement. Thus, a proper 

treatment for specific muscle was necessary for a shoulder complex with functional deficiency. 

Several studies indicated that rehabilitation training based on high-intensity, task-oriented and 

highly repetitive movements was beneficial for the restoration of shoulder function [1-7]. 

Therefore, the use of the robotic device became one of the most effective approaches to the 

rehabilitation. Rehabilitation robots could manipulate the movement of patients in several ways 

by applying forces to guide patients’ movement in a smart way [8]. However, the rehabilitation 

efficiency of this method was still controversial [8-10]. In the rehabilitation with robotic 

devices, the training plan was normally selected from a standard options menu based on 

subjective clinical experience rather than objective prediction [9]. Furthermore, the training 

plan lacked the consideration of accurate specification about the unique characteristics of 

patients’ physiological feature of musculoskeletal function, not to mention the muscle-specific 

rehabilitation. 

Although the musculoskeletal movement characteristics have not been considered fully in 

the rehabilitation robots, researchers of biomedical engineering have done a lot of work 
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focusing on the study of physiological musculoskeletal model of human shoulder. For the 

model of the shoulder, the typical representation of the muscles’ lines of action was the 

line-segments model [11-14]. The models have been applied in several scenarios such as 

surgical simulation [13], wheelchair mechanics research [15,16], neuroprostheses control 

[17,18], etc. The direct purpose of these studies, focusing on the muscle forces, joint-contact 

forces and moment arms etc., was to reproduce and simulate muscle force generation patterns. 

To achieve this more precisely, Webb & Blemker et al. [19] proposed a more precise and 

complex 3D finite element model of the shoulder to predict the moment arms and muscle 

forces of the shoulder. However, these musculoskeletal models based on the anatomical 

structure have not been applied in the rehabilitation robots adequately [9,20]. Therefore, in this 

paper, a three-dimensional mathematical musculoskeletal model [12,21,22] of the shoulder 

complex was used to represent the relationship of the muscles and external loads in deter-

mining the training strategy for the muscle-specific rehabilitation. 

When training with the active-resisted mode of the rehabilitation robots, the robots 

delivered resistance against movements actively executed by the patient. The main aim of this 

study was to propose a muscle-specific rehabilitation training method based on the optimal 

load orientation concept (OLOC). Through controlling the magnitude and orientation of 

external loads, we could implement a high-efficiency resistance training for a specific muscle in 

the scenario of rehabilitation with robots’ active-resisted mode. Furthermore, this paper 

assessed the goodness of the shoulder movement trajectory where the OLOC was adopted. 

This paper was organized in four sections as follows: Introduction; Methods; Results; 

Conclusions. 

Methods 

Assuming utilization of a robot to carry out the active-resisted rehabilitation training for an 

impaired shoulder, the robots delivered resistance against the movements executed actively by 

the shoulder. For a given size of load, different load direction would lead to different muscle 

forces, thus the specific-muscle would have different levels of muscle force. Therefore, for a 

specific muscle, the level of muscle force could be designed by controlling the external load. 

Musculoskeletal Model of Shoulder Complex 

To make the active force strategy for a specific muscle’s rehabilitation, an accurate 

specification of musculoskeletal geometry would be necessary. Therefore, a three-dimensional 

mathematical musculoskeletal shoulder model [12,21,22] was used to represent the geometry 

structure of the skeleton and muscles of the shoulder and calculate the muscle activate state 

under a specific external load. The geometric parameters of the model were developed on the 

basis of the CT images of bones and muscles collected from the Visible Human Project (VHP) 

database [21]. Considering translations were negligible compared with rotations, all the 

articulations of the shoulder, including the sternoclavicular articulation (SC), 

acromiocl-avicular articulation (AC), glenohumeral articulation (GH) and scapulathoracic 

articulation (ST), except for the ST articulation were assumed to be the ball-and-socket joints. 

However, due to the compliance of the surrounding muscles, the ST articulation was 

considered as a joint which allowed the scapula’s translation and rotator movement with 

respect to the thorax. Besides, the thorax was represented as an ellipsoid. In this paper, we 

assumed that the upper arm and forearm moved without relative movement. Therefore, total 

31 muscle bundles were used to represent the muscles that contributed to the function of the 
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shoulder (see in Table 1). The muscle path was determined using the obstacle-set method 

proposed by Garner and Pandy [22], so that the muscle lines of action could be determined. 

In this paper, the 3-element Hill-type model which was widely applied in muscle-driven 

simulations were used [23-26]. In this model, the muscle’s driven properties was represented 

by four key parameters, including the tendon slack length ( T
sL ), pennation angle (  ), optimal 

muscle-fiber length ( M
oL ) and peak isometric muscle force ( M

oF ). The values of this 

musculotendon parameters of all the 31 muscle bundles contributing to the shoulder movement 

were obtained from the study reported in [13,26,27]. Table 1 showed those parameters 

where the PCSA represented the physiological cross-sectional area. 

Table 1. Assumed musculotendon parameters of all the 31 muscle bundles  

Muscle bundles Abbr. PCSA 

(cm
2
) 

M
oL  

(cm) 

T
sL  

(cm) 

M
oF  

(N) 

  

(deg) 

Subclavius SBCL 4.36 2.02 5.07 144.02 0 

Serratus anterior superior SRAs 8.12 11.35 0.27 268.05 0 

Serratus anterior middle SRAm 4.00 17.91 0.75 132.12 0 

Serratus anterior inferior SRAi 8.41 23.15 0.01 277.51 0 

Trapezius from cervical v1-6 TRPc 6.24 18.62 0.48 205.95 0 

Trapezius cervical v7 TRPc7 3.61 21.44 0.60 119.25 0 

Trapezius thoracic v1 TRPt1 3.45 19.37 0.32 114.01 0 

Trapezius from thoracic v2-7 TRPt 12.40 15.91 0.42 409.23 0 

Levator scapulae LVS 3.78 19.02 0.90 124.78 0 

Rhomboid minor RMN 6.71 17.55 0.44 221.51 0 

Rhomboid major thoracic v1- 2 RMJt2 4.14 17.47 0.67 136.48 0 

Rhomboid major thoracic v3- 4 RMJt3 2.48 18.33 0.24 81.93 0 

Pectoralis minor PMN 4.87 15.03 0.01 160.55 0 

Pectoralis major clavicular PMJc 10.38 22.65 0.45 342.46 0 

Pectoralis major sternal PMJs 14.68 16.58 9.03 484.35 0 

Pectoralis major ribs PMJr 11.14 117.76 9.58 367.78 0 

Latissimus dorsi thoracic LTDt 5.26 34.87 14.75 173.43 0 

Latissimus dorsi lumbar LTDl 12.40 15.91 0.42 409.23 0 

Latissimus dorsi iliac LTDi 3.80 48.17 10.89 125.52 0 

Deltoid clavicular DLTc 8.41 14.68 1.64 277.48 0 

Deltoid acromial DLTa 56.38 6.69 8.56 1860.52 0 

Deltoid scapular DLTs 17.19 17.02 5.93 567.15 0 

Supraspinatus SUPR 20.84 4.28 13.03 687.84 0 

Infraspinatus INFR 33.32 6.76 5.58 1099.61 0 

Subscapularis SBSC 35.69 8.92 4.94 1177.93 0 

Teres minor TMN 6.77 5.72 4.55 223.35 0 

Teres major TMJ 15.59 14.84 5.79 514.51 0 

Coracobrachialis CRCB 4.55 17.60 4.23 150.05 0 

Triceps brachii long head TRClg 40.52 15.24 19.05 629.21 15 

Biceps brachii short head BICs 13.99 13.07 22.98 461.76 10 

Biceps brachii long head BICl 11.91 15.36 22.93 392.91 10 
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Muscle Activations Prediction 

A multi-solution static equilibrium problem was solved to calculate the muscle forces for each 

prescribed posture of the shoulder under a certain external load. The activation was used to 

describe the activate status of each muscle. Based on the studies reported by Crowninshield 

and Brand [28,29], the muscle forces could be solved by minimizing the sum of the squares of 

all muscle stresses. This objective cost function strengthened the synergistic muscle load 

sharing for loading scenarios. 

The Optimal-Load Orientation (OLO) Algorithm 

Assuming a shoulder movement under a constant-magnitude external load, the muscles will 

contract actively to resist the load. Thus, for a specific muscle and a certain posture of shoulder, 

there would always be a certain load orientation which led the specific muscle to the maximum 

of its activation level. This orientation of load was defined to be the optimal external-load 

orientation ( opt ). Fig. 1 showed the flow chat which described the calculation of the optimal 

load orientation.  

 

Figure 1. The flow chat of calculating the optimal load orientation and the evaluation methodology of 

rehabilitative movement trajectory 

Only the movement of shoulder was considered, thus the upper arm and forearm were 

assumed to be relatively fixed. The external load was assumed to be a pure force. Fig. 2 

showed the diagram of the upper limb under an external load ( PF ).The humerus reference 

frames defined in Fig. 2 were described in [21]. The PF was applied on the midpoint of the EL 

and EM which were the anatomical landmarks defined in [30], thus the total load was the 

resultant force of PF and the gravity of upper limb. During the shoulder movement, only when 

the direction of the external load was perpendicular to the long axis of the humerus, the muscle 

will suffer the greatest load effect. Therefore, the PF was assumed to rotate in the normal plane 

perpendicular to the long axis of the humerus, and its orientation was described by the angle , 

and then different values of the activation (x) were generated. Thus the  x - curve was 

determined. 
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Figure 2. Schematic of external load applied to the shoulder 

Fig. 3 showed the  x - curve of deltoid clavicular part (DLTc) under the external load 

orientation of 2.0kg (about 20N). The activations plotted in black line was the result of 

low-pass filtering (using a moving average filter with the span of 30). Thus the opt  of the 

DLTc that led the activation to its maximum was determined. Meanwhile, the values of opt  

varied with the change of the shoulder postures (Fig. 3b). 

 

Figure 3. The  x - curve of deltoid clavicular (DLTc) under the load of 2.0kg 

Results 

To obtain the optimal load orientation cluster and study the influence of the load magnitude, the 

shoulder abduction in coronal plane with the load magnitudes ranging from 0.5kg to 6.0kg was 

simulated. The differences of external-load orientation clusters under the different values of 

external load were quantified in terms of RMSE and coefficient of determination (R2). 

The Optimal Load Orientation (OLO) 

The results of OLO demonstrated a continuity of the  x -  curves (Fig. 3), namely, the 

activations curve around its maximum was continuous. It meant that when the load magnitude 

covered in the interval [ 1 2 ,   ] (Fig. 3), the activation could be considered to be at a 

relatively high level, the same as all of the other muscles. Despite different values of optimal 

orientations, the results indicated a significant consistency for the activations calculated under 

different magnitudes of external load. Fig. 4 showed the optimal load orientation (grey circle) 

of deltoid scapular (DLTs) (RMSE = 2.62, R2 = 0.85) obtained by regression fitting the 

optimal load orientations under a series of magnitudes of load. For most of the muscles, the 

OLO distributed in a single concentrated region (solid lines) with the different load magnitudes 

for abduction from 20 to 80° (e.g., TRPc (RMSE = 4.13, R2 = 0.85), DLTc (RMSE = 5.50, 

R2 = 0.82), DLTa (RMSE = 4.88, R2 = 0.93), SUPR (RMSE = 3.70, R2 = 0.78), etc.). In Fig. 

5 (b), the coordinate system coincided with the ground reference described in [21]. 
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Figure 4. The optimal load orientation distribution of deltoid scapular (DLTs). (a) Single concentrated 

region of DLTs. (b) The 3D representation of optimal load orientation paths. The GH center trajectory (blue 

line), elbow movement trajectory (pink line), virtual long axis of the humerus (black dotted line) and 

endpoints of external force vectors (red line) were shown vividly. The arrows represented the virtual load. 

However, except for the scenarios of single region, there were also multi-region 

distributions for several muscles. Fig. 5 showed the optimal load orientations of teres major 

(TMJ). In Fig. 5, L1 (RMSE = 8.44, R2 = 0.62) and L2 (RMSE = 8.55, R2 = 0.60) were the 

optimal orientation regions for the load sizes less than 3.0kg and greater than 3.0kg 

respectively. Therefore, for a specific muscle, the optimal load orientation path should be 

determined according the magnitude of the load.  

 

Figure 5. The Multi-region distribution of the OLO of teres major (TMJ) 

Muscle Training Levels with Loads Based on OLOC 

The mean activation was used to represent the training efficiency of the specific muscle. To 

evaluate the effect of OLOC for the improvement of the training efficiency, the weights-lifting 

abduction and the abduction with loads which based on OLOC were analyzed respectively. 

Fig. 6 showed the comparison of mean activations for the main muscles of shoulder obtained 

from the simulation of these two patterns. The results suggested that the muscle-specific 

rehabilitation training method based on the OLOC improved the training efficiency of specific 

muscles significantly (activations increased by an average of 537% relatively, and mean 

activation of all muscles increased by 165% relatively).  

There were several muscles whose activations increased most significantly, including the 

SRA (from 0.00 to 0.21), LTDc (from 0.02 to 0.26), TRP (0.04 to 0.37), TMJ (0.11 to 0.67), 

LTDi (0.17 to 0.78), DLTa (0.13 to 0.57), SUPR (0.25 to 0.97). However, there also was 

insignificance in the improvement of activation, including the INFR (increased by 1.07% 

relatively), BICl (5.89%). The differences of the improvement ratios were governed by the 

movement trajectories used for shouler’s rehabilitation. The results indicated the differences of 

training efficiency among different muscles for a same rehabilitation movement.  

326



SRA

TRP

RMN

RMJ

PMN

PMJ

LTDt

LTDl

LTDi

DLTc

DLTa

DLTs

SUPR

INFR

TMN

TMJ

TRCl

BICs

BICl

0  0.5 1  1.5

0.5 kg

(a)

SRA

TRP

RMN

RMJ

PMN

PMJ

LTDt

LTDl

LTDi

DLTc

DLTa

DLTs

SUPR

INFR

TMN

TMJ

TRCl

BICs

BICl

0  0.5 1  1.5

2.0 kg

(b)

SRA

TRP

RMN

RMJ

PMN

PMJ

LTDt

LTDl

LTDi

DLTc

DLTa

DLTs

SUPR

INFR

TMN

TMJ

TRCl

BICs

BICl

0  0.5 1  1.5

3.5 kg

(c)

SRA

TRP

RMN

RMJ

PMN

PMJ

LTDt

LTDl

LTDi

DLTc

DLTa

DLTs

SUPR

INFR

TMN

TMJ

TRCl

BICs

BICl

0  0.5 1  1.5

5.0 kg

(d)

 

 

Abduction with weight

Abduction with optimal load

 

Figure 6. Comparison of mean activations predicted by simulating weights -lifting abduction (cyan) and 

abduction with optimal-orientation external load (pink) 

The main purpose of the training method proposed in this paper was to reduce the external 

load in the premise of high-efficiency training for specific muscle. However, muscles’ training 

effects were different in response to different load magnitudes. Fig. 7 depicted the impact of 

the magnitudes of load. There were some muscles whose activations showed low level under 

the small load, but a significantly promotion with the increase of load size, such as the SRA, 

DLTs, TRP, BICs, etc. For these muscles, a little increasement in the load could lead to a 

significantly promotion in the activations of muscles. Besides, some muscles’ activations 

changed with the magnitudes of load insignificantly, such as the PMN, LTD, DLTc, DLTa, etc. 

For these muscles, increasing the load had not significant effect on the promotion of training 

levels, thus a change of the rehabilitation movement should be considered. Therefore, when 

determined an external load plan for a specific muscle, an appropriate choice between 

increasing the level of training and reducing the value of the load must be made. 

 

Figure 7. The impact of load magnitudes on training level for some muscles  

The Evaluation of Training Movement 

Assuming abduction in coronal plane with muscle-specific rehabilitation training method based 

on the OLOC, the mean activations and improvement ratios of different muscles were different. 

To evaluate the applicability of the rehabilitation movement for different muscles’ training, the 

mean activations of the muscles were used to represent the muscle training levels. Fig. 8 

showed the average activations (mean±SD) obtained by averaging the activations’ values 

generating under different magnitudes of the load varying from 0.5kg to 6.0kg. On average, 

there were several muscles whose activations was relatively high (>0.8), including the RMN 

(SD=0.04), PMN (SD=0.01), LTDt (SD=0.08), LTDl (SD=0.03), SUPR (SD=0.05), and 

TMN (SD=0.01). Thus the result indicated that the rehabilitation movement of abduction was 

beneficial to the training of these muscles. However, the effects of abduction in coronal plane 

for the training of some muscles whose activations were lower than 0.22 were ineffective, 

including the SRA, INFR, and BICI, especially the INFR (x=0.15). Furthermore, considering 
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the use of small external load in rehabilitation training generally, the SRA, INFR, and BICI may 

not be trained effectively. 
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Figure 8. Average activations (mean±SD) of the main muscles. The error bars represented the standard 

deviation (SD)  

Conclusions 

The overall aim of this study was to propose a muscle-specific rehabilitation training method 

for shoulder based on the optimal-load-orientation concept (OLOC). First, we calculated the 

optimal load orientation clusters for the mainly 31 muscle bundles of the shoulder complex, 

thus to achieve the high-efficiency resistance training of specific muscles through the control of 

external load. The analysis indicated that, for a given training movement of the shoulder, the 

distribution of optimal load orientation showed a significant consistency in a certain 

external-load magnitude interval. Secondly, after the comparison of mean activations obtained 

from the two movement patterns (as described in Fig. 6), it was demonstrated that the 

muscle-specific rehabilitation training method based on the OLOC could improve the training 

efficiency of the specific muscles significantly. In general, the novel aspect of this study was the 

development of the optimal-load-orientation concept. Once given a target muscle, the external 

load plan which was applied to an active-resisted rehabilitation robot was determined, thus to 

achieve the high-efficiency training by strengthening the training of target muscle while 

weakening the others. 
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