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Abstract. Multi-scale bistable array (MSBA), which combines normalized scale transform, 
stochastic resonance effect driven by colored noise and parallel array, can be applied to weak signal 
detection under heavy noise. The experimental application in incipient fault feature detection of 
rolling element bearing has verified the effectiveness of MSBA model. This paper studies feature 
extraction method of rolling element bearing status degradation based on enhanced detection effect 
of MSBA model. Integrated features are proposed using local spectrum kurtosis and local 
signal-to-noise ratio of fundamental component of bearing faults. Different sizes of damages are 
planted on outer race of bearings for experimental validation. 

Introduction 
An effective prognostics and health management (PHM) system is expected to provide not only 

early detection of incipient fault of important components but also the means to monitor and predict 
the progression of the fault[1]. Rolling element bearing, as a critical component of transmission, is 
widely used in mechanical equipment. Features which indicate bearing status degradation progress 
can be used in forecasting, or remaining useful life prediction. However, noise has often stunted the 
feature extracting procedures.  

Since stochastic resonance (SR) was proposed, it has been developing rapidly in incipient fault 
detection [2-9], especially in low signal-to-noise ratio (SNR) cases. It is essentially a statistical 
phenomenon resulting from an effect of noise on information transfer and signal processing which 
is observed in both man-made and naturally existing nonlinear systems. Compared with 
conventional linear methods, the methods based on SR are promising in the conditions of short data 
records and heavy noise.  

This paper focuses on feature extracting method of bearing status degradation based on 
multi-scale bistable array (MSBA), which is a stochastic resonance model proposed for weak signal 
detection used in incipient fault diagnosis [9]. The bearing vibration signal is processed by signal 
processing method based on MSBA. Local spectral kurtosis (LSK) and local signal-to-noise ratio 
(LSNR) at bearing fault frequencies are proposed as indicators of bearing status. Combined with 
RMS and time domain statistical characteristics, LSK and LSNR are treated as the subset of bearing 
status feature vector. Finally, new integrated features are constructed for incipient fault detection 
and status degradation monitoring purpose. 

Basic Theory of Multi-Scale Bistable array 
In the context, stochastic resonance is commonly described as an approach to increase the SNR 

at the output through the increase of the special noise level at input signal. Considering the motion 
in a bistable double-well potential of a lightly damped particle subjected to stochastic excitation and 
a harmonic excitation (i.e., a signal) with low frequency ω0, the signal is assumed to have small 
enough amplitude that, by itself (i.e., in the absence of the stochastic excitation), is unable to move 
the particle from one well to another. We denote the characteristic rate, that is, the escape rate from 
a well under the combined effects of the periodic excitation and the noise, by α=2πntot/Ttot, where 
ntot is the total number of exits from one well during time Ttot. We consider the behavior of the 
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system as we increase the noise while the signal amplitude and frequency are unchanged. For zero 
noise, α=0, as noted earlier. For very small noise, α<ω0. As the noise increases, the ordinate of the 
spectral density of the output noise at the frequency ω0, denoted by Фn(ω0), and the characteristic 
rate α increases. Experimental and analytical studies show that, until α≈ω0, a cooperative effect (i.e., 
a synchronization-like phenomenon) occurs wherein the signal output power Фs(ω0) increases as 
the noise intensity increases. Remarkably, the increase of Фs(ω0) with noise is faster than that of 
Фn(ω0). This results in an enhancement of the SNR.  

At present, the most common studied SR system is bistable system, which can be described by 
the following Langevin equation 

( ) ( )3
0 0x ax bx Asin t tω ϕ= − + + +Γ                                               (1) 

Γ(t) is noise term and <Γ(t), Γ(0)>=2Dδ(t), Asin(ω0t+φ0) is a periodic driving signal. Generally, it is 
also written as the form of Duffing equation 

( ) ( )0 0sin3x βx ax bx A t tω φ= − + − + + +Γ                                           (2) 
where β is the damping coefficient. 

The SR effect is still shown in a nonlinear bistable system when the white noise is changed to 
band-limited noise, which indicates that it is possible to realize the SR by tuning the band-limited 
noise [9, 10]. To improve the signal processing based on SR when the original noise intensity is 
beyond the optimal level, the input signal is decomposed into multi-scale signals by orthogonal 
wavelet transform. Stationary white noise with zero mean can be decomposed into independent 
band-limited noises by orthogonal wavelet transform. The reconstructed detail at each scale and the 
approximation signal at the last scale are independent of each other owing to the orthogonality of 
wavelet base.  

By combining uncoupled parallel array of dynamical subsystems with colored noise SR effect, 
an MSBA consisting of bistable units formulated as (1) is constructed. Figure 1 illustrates the 
configuration of the MSBA. The input signal is decomposed into different scale signals by wavelet 
transform. In the context, aj and dj denote reconstructed approximation signals and detail signals, 
respectively for convenience. The driving signal of the MSBA, which is in the low frequency region, 
is supposed to be contained in the approximate signal aJ. The approximate signal aJ and each scale 
noise dj reconstruct the new input signal of each bistable element. Then, the number of array 
elements is equal to the scale number J. Being uncoupled between any two elements, the outputs of 
all units are averaged together to produce the entire array output y(t). Similar to uncoupled parallel 
SR array, each element is subjected to an independent array noise dj and the same noisy input signal 
aJ. However, the inner array noise intensity and characteristics of the MSBA are different from 
those of the uncoupled parallel array. The noise intensity of input signal is reduced after 
decomposition. The noise at different scale has a different contribution to the SR effect of the single 
bistable element in the array. 

Numerical simulation is performed according to the MSBA model given in Figure 1. Each 
bistable element in the MSBA is formulated as (1). The SR effect of the MSBA is evaluated with 
tuning the input noise intensity D and the analyzed scale number J. The other system parameters are 
chosen as a=b=1, A0=0.3, f0=0.01 Hz and φ=0. The sampling frequency is set to be fs=500f0=5Hz, 
and the data length of the input signal is set to be 4000. 

Figure 2 shows the SR effect of the MSBA with tuning noise intensity D and the analyzed scale 
number J. The array output SNR curves, from bottom up, correspond to J = 1, 2, 3, 4, 5, and 6, 
respectively. The other parameters are chosen as a=b=1, A0=0.3, f0=0.01 Hz and φ=0. The results 
indicate that the tuning noise intensity D of the input signal produces an obvious SR effect on the 
MSBA. When the value of D increases, the array output SNR first increases and then decreases 
after reaching a maximum. It can be found that the output SNR resonance region is broadened with 
the increase of the analyzed scale number J, and also the maximum point is moved to a larger noise 
intensity D with almost the same value. When the noise intensity D becomes larger, the SNR curves 
of J>1 will go up compared with the curve of J=1. This means that the output signal of the MSBA 
has been enhanced further than that of the single bistable system at a larger input noise intensity D. 
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Thus, the model of MSBA has admirable capability in signal processing based on SR under large 
noise. 

     
Fig.1. MSBA model of J elements.   Fig.2. Output SNR of the MSBA versus tuning noise 

intensity D and analyzed scale number J 

Feature extraction method based on MSBA model 
Enhanced detection method based on MSBA has been applied to incipient fault diagnosis [9]. In 

this paper, vibrational features extracted at bearing fault frequencies are used to indicate bearing 
status degradation. Local spectral kurtosis and local signal-to-noise ratio around bearing fault 
frequencies is calculated not only for fault diagnosis but also for status tracking. Integrated features 
are extracted based on the time domain characteristics and enhanced features, LSK and LSNR 
exactly. The integrated features can be used to fault diagnosis and progression monitoring. 

Assume that the vibration signal is x(n). Then, root mean square of x(n) is 
N

n
RMS x n

N =

= ∑ 2

1

1
( )                                                         (3) 

N is the data length of x(n). 
Crest factor of x(n) is calculated as 

xCF
RMS

=
ˆ                                                                 (4) 

x̂  is the peak value of x(n). 
Kurtosis of x(n) is 
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μ is the mean value of x(n), σ2 is the variance of data, N is the data length. 
The vibration signal from bearing is processed, during which the component at fault frequencies 

are enhanced, by weak signal detection method based on the classical SR and MSBA model. The 
local spectral kurtosis is defined as kurtosis of spectral data around bearing fault frequencies. For 
given length spectral data X(f), which cover bearing fault frequency component, the LSK is 
calculated as 

4

22

( )
( )

( )

X f
LSK f

X f
=                                                            (6) 

X(f) is a section of bearing envelope spectrum enhanced by SR or MSBA model. 
Similarly, the LSNR is calculated as 

0
lim( [ ( ) / ( )]d )f f

Nf ff
LSNR S f S f f+∆

−∆∆ →
= ∫                                                (7) 

S(f) is the value of spectral component at bearing fault frequency, SN(f) is the mean value of the 
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spectrum around bearing fault frequency. 
Due to noise from measurement and other dynamical components, it is difficult to indicate 

bearing status using only one of the features mentioned above. Additionally, damage position 
cannot be figured out based on the time domain characteristics. The enhanced frequency domain 
features is suitable for incipient fault diagnosis but inappropriate to bearing status tracking. So, 
traditional features are combined with frequency domain features enhanced by MSBA, as depicted 
in Figure 3. 

 
Fig.3. Diagram of integrated feature extraction method 

All the features extracted are standardized to form a feature vector 

1 2 3 4 5
max max max max max

, , , ,RMS CF K SK LSNRA A A A A
RMS CF K SK LSNR

 
=  
 

F                                  (8) 

Ai is weighted coefficients，i=1, 2, 3, 4, 5. The integrated feature of the vector is calculated as 
1

2 2

1
( )

n

i
i

I F f
=

= = ∑                                                            (9) 

Test results 

The proposed extraction method is applied to signal from machinery fault simulation test rig 
shown in Figure 4. Tests were carried out on the test rig with good and planted-in outer race fault 
bearings. The test rig is driven by a variable-speed electric motor. For these tests, the motor was 
running at 660 RPM, with two rotor disks on the shaft. The Bearing1 in Figure 4 is alternated with 
normal bearing, bearing with 0.2-3.2 mm different size outer race faults, which are shown in Figure 
5. The raw vibration data were collected with the sampling rate 50 kHz. 

       
Fig.4. Machinery fault simulation test rig      Fig.5. The outer races used in the experiments 
The time domain features are calculated using the vibration data collected on working bearings 

with different sizes of outer race damages. Figure 6 displays the RMS feature curve of the bearings 
tested. The curve shows that the RMS feature has strong rising trend with increasing of outer race 
fault size, though there are still some fluctuations. But we cannot distinguish fault bearing from the 
normal one apparently when the fault size is small.  
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The kurtosis feature curve is depicted in Figure 7. The curve also has a rising trend with 
increasing of outer race fault size and also some fluctuations, especially when the fault size is 
greater than 1.1 mm. We still cannot identify fault bearing easily at the beginning of the curve. 

      
Fig.6. The curve of RMS feature              Fig.7. The curve of kurtosis feature 

The crest factor feature curve is depicted in Figure 8. The curve has a smooth rising trend with 
increasing of fault size and some fluctuations, especially when the fault size is greater than 1.4mm. 
It will be misleading if the crest factor is used to diagnose 0.2mm outer race bearing fault. 

The vibration signal was processed by signal enhanced method based on traditional SR and 
MSBA model. Then, the LSK and LSNR features are calculated according to (6) and (7) around 
outer race fault frequency in frequency domain. The curves are shown in Figure 9 and Figure 10. 
There are similar uptrends in the two feature curves. The feature curves processed by MSBA model 
are more sensitive to incipient bearing fault than that processed by traditional SR model. 

     
Fig.8. The curve of crest factor        Fig.9. The curve of LSK features 

Any one of the above features cannot be used in bearing status tracking for the existence of 
intensive fluctuations of the curves. Meanwhile, time domain features cannot locate the bearing 
fault position. Feature vector is calculated according to (8). And the two similar integrated features 
using LSK and LSNR based on MSBA model are shown in Figure 11. Despite some light 
fluctuations, there is a steep uptrend and an obvious distinction between normal and fault bearings. 
The integrated features have potential in the application of both fault diagnosis and status tracking 
when the bearing fault size is smaller than 2 mm. Once the damage size is larger than 2mm, the 
integrated features have a down trend and the bearing may cause downtime in a short time. 

     
Fig.10. The curve of LSNR features       Fig.11. The curve of integrated features 
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Conclusion 
For vibration signal of bearing, the time domain feature curves have uptrends with fluctuations 

when bearing damage size is growing up. The LSK and LSNR features enhanced by MSBA model 
have advantages in incipient bearing fault diagnosis. The integrated features proposed in this paper 
can be used in both fault diagnosis and status tracking. The conclusions above are validated with 
outer race fault experiment. 
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