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Abstract. Chaotic motions of a Rayleigh-Duffing oscillator with periodically external and parametric 
excitations are investigated rigorously. Chaos arising from intersections of homoclinic orbits is 
analyzed with the Melnikov method. The critical curves separating the chaotic and non-chaotic 
regions are obtained. The chaotic feature on the system parameters is discussed. Chaotic dynamics 
are also compared for the systems with a periodically external excitation or a parametric excitation. 
Some new dynamical phenomena including”controllable frequency” are presented. Numerical 
simulations verify the analytical results. 

Introduction  

The Rayleigh-Duffing oscillator models are widely used in physics, engineering, electronics, and 
many other disciplines. The nonlinear dynamics for this class of oscillators has been investigated in 
recent years. Using numerical and analytical approaches, nonlinear dynamics of a non-ideal 
Duffing-Rayleigh oscillator is studied by Felix et al [1]. Kanai and Yabuno [2] investigated 
creation-annihilation process of limit cycles in the Rayleigh-Duffing oscillator with negative linear 
damping and negative linear stiffness by the perturbation method. Qriouet and Mira [3] studied 
bifurcation structures related to families of fractional harmonics solutions generated by the 
Duffing-Rayleigh equation with a non-symmetrical periodic external force. With path integration 
based on the Gauss-Legendre integration scheme, Xie et al [4, 5] studied a Duffing-Rayleigh 
oscillator subject to harmonic and stochastic excitations. By using the asymptotic perturbation 
method, Siewe et al [6] studied the principal parametric resonance of a Rayleigh-Duffing oscillator 
with time-delayed feedback position and linear velocity terms. Mihara and Kawakami [7] studied 
synchronization and chaos of coupled Duffing-Rayleigh oscillators. Ma et al [8] investigated the 
synchronization of self-sustained Rayleigh-Duffing oscillator by the synchronization criteria based 
on Lyapunov direct method and the stability theory of linear time-varied systems. With the Melnikov 
method and Numerical methods, effects of nonlinear dissipation on the basin boundaries of a driven 
two-well Rayleigh-Duffing oscillator were investigated by Siewe et al [9]. Using the Melnikov 
method, Siewe et al [10] investigated the chaotic behavior of the Rayleigh-Duffing oscillator under a 
harmonic external excitation.  Using the Melnikov method, Zhang and Luo [11] studied chaos of 
Rayleigh-Duffing like system. They also investigated the synchronization of two fractional Rayleigh 
Duffing-like systems with active control technology. With the Melnikov method, the effect of 
nonlinear dissipation on the basin boundaries of a driven two-well modified Rayleigh-Duffing 
oscillator was studied by Miwadinou et al [12]. With stochastic averaging method, Zhang et al [13] 
investigated the response of a Duffing-Rayleigh system with a fractional derivative under Gaussian 
white noise excitation. The effects of different system parameters and noise intensity on the response 
of the system are also discussed there. By using the composite cell coordinate system method, Yue et 
al [14] studied the global bifurcations including the crisis and metamorphosis of the 
Rayleigh-Duffing oscillator. 

In this paper, chaotic motions of the Rayleigh-Duffing oscillator with periodically external and 
parametric excitations are studied analytically with the Melnikov method. The critical curves 
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separating the chaotic and non-chaotic regions are plotted. The chaotic feature on the system 
parameters is discussed in detail and some new dynamical phenomena are presented. The phase 
portraits and Poincaré sections are numerically computed, which verify the analytical results. 

Formulation of the problem 
Consider the Rayleigh-Duffing oscillator with periodically external and parametric excitations 
                                2 3(1 ) (1 )cosx x x x x f x tµ α β ω− − − + = +                                                         (1) 

where µ , α  and β  are nonlinear damping, linear and nonlinear restoring parameters, f and 
ω are the amplitude and frequency of the excitation, respectively. 

Assuming the damping µ and excitation amplitude f  are small, settingµ εµ= , f fε= , where 
ε is a small parameter, then Eq.(1) can be written as 
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Consider the case of double-well potential, i.e. 0, 0α β> > , when =0ε , the unperturbed system 
of (2) is 
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which is a planar Hamiltonian system with the Hamiltonian 
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System (3) has one saddle (0,0) and two centers ( / ,0)α β   and ( / ,0)α β− . There exist 
homoclinic orbits connecting (0,0)  to itself for 0h =  with the expressions of (5), see Fig.1.  
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Fig.1 The phase portrait of system (3) in the case of double-well potential. 

Chaotic motions of the system in the case of double-well potential 
In this section, we use the Melnikov method [15] to investigate the chaotic motions of system (2). 
We compute the Melnikov function of system (2) along the homoclinic orbit 

             hom hom
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as follows: 
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Thus, 0( )M t+ has simple zeros and chaotic motions occur if and only if 
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While the Melnikov function of system (2) along the homoclinic orbit 
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Now we discuss the chaotic feature on the system parameters. First, taking 
1α = , 0.1,0.2, ,0.7,β =  respectively, the critical curves of system (2) for Γ+ in ( / , )fµ ω plane are 

shown as in Fig 2(a). The critical curve has a classical bell shape in this case. This means that, with 
the excitations possessing sufficiently small or very large periods, the systems are not chaotically 
excited. One can also see that for fixed ω , the critical value for chaos first increases and then 
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decreases as the increasing of β . Next, taking 1,β =  0.1,0.2,α =     0.7, respectively, the critical 
curves for chaotic motions of system (2) for Γ+ are shown as in Fig 2(b). From Fig 2(b) one can see 
that for fixed small values ofω , the critical values of chaotic motions decrease monotonously as the 
increase ofα ; but the case is opposite for fixed large values of ω . Last, for α = 1, β = 0.1 or β = 1, the 
critical curves of chaos (for +Γ ) for systems with periodically parametric excitation or external 
excitationare shown as in Fig. 3. From Fig. 3 we can see that the critical value of systems with 
parametric excitations is larger than that of systems with external excitations.When 1α = , the critical 
curves of system (1) for −Γ  in ( / , )fµ ω  plane are shown as in Fig 4(a). From Fig 4(a) we can see 
that when 0.3α ≥ , the critical curve first decreases quickly to zero and then increases, at last it 
decreases to zero as ω increases from zero. There exists a controllable frequency ω  excited at which 
chaotic motions do not take place no matter how large the excitation amplitude is. When α is fixed, 
the controllable frequency increases as β  increases. While 1β = , the critical curves for chaotic 
motions of system (1) for −Γ   are shown as in Fig. 4(b). From Fig. 4 (b) we can see that there also 
exists a controllable frequency which is near 1.4 and decreases as α  increases. 
For 1, 1or 0.1α β β= = = , the critical curves of chaos (for −Γ ) for systems with periodically 
parametric excitation or external excitation are shown as in Fig. 5. From Fig. 5 we can see that 
for 0.1β = , when the frequency ω  is small, the critical value of systems with external excitations is 
larger than that of systems with parametric excitations; while ω  crosses a critical value, the critical 
value of systems with external excitations is smaller than that of systems with parametric excitations. 
While for 1β = the case is opposite. When 1,α = , 1,or 0.1β β= = the critical curves of system (1) 
for +Γ  and −Γ are shown as in Fig. 6. From Fig. 6 we can see that the critical value of  is smaller than 
that of +Γ  , which means as the increase of the excitation amplitude, −Γ  is first chaotically excited, 
and then both  +Γ and −Γ are chaotically excited. 

                                       
(a)                                                                        (b) 

Fig.2 The critical curve for different values of (a) β  , (b) α  for +Γ  

                                   
(a)                                                                        (b) 

Fig.3 The critical curves of +Γ for (a) 1, 0.1α β= = , (b) 1, 1α β= =  

289



 

                                      
(a)                                                                          (b) 

Fig.4   The critical curve for different values of (a) β  , (b) α   for −Γ  . 

                                     
(a)                                                                       (b) 

Fig.5 The critical curves of +Γ  and −Γ for (a)α = 1, β = 0.1, (b) α = 1, β = 1. 

                                     
(a)                                                                       (b) 

Fig.6 The critical curves of −Γ for (a)α = 1, β = 0.1, (b) α = 1, β = 1. 

                           
(a)                                                                           (b) 

Fig.7  The (a) phase portraits and (b) Poincar´e sections of system (2) for α = β = 1. 
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Fig.8  The bifurcation diagram of system (2) for  α = β = 1. 

Numerical simulations 
Using the fourth-order Runge-Kutta method, choosing the system parameters 
0.001, 1, 1fε µ ω= = = = , 1, 1α β= = , the initial value ( (0), (0))x y = (0.001,0.001) , the phase 

portrait and Poincaré section are shown as in Fig .7.  Noting that these parameters are in the chaotic 
region, so the system is chaotic excited, which agree with the analytical results. For [0.1,1.8]f ∈ , the 
bifurcation diagram of system (2) is shown as in Fig. 8, from which we can see that paroxysmal chaos 
will occur as the increasing of the excitation amplitude. 

Conclusions 
Using the Melnikov method, chaotic motions for a Rayleigh-Duffing oscillator with periodically 

external and parametric excitations are investigated in the cases of double-well potential. The 
chaotic feature on the system parameters is discussed in detail. It is presented that there exist a 
“controllable frequency” for this system. Numerical simulations verify the analytical results, and 
also present that paroxysmal chaos will occur as the increasing of the excitation amplitude. 
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