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Abstract. A kernel adaptive filtering de-noising method for telemetry signal was proposed. The 
telemetry vibration signal is often interfered with Gaussian noise and impulse noise at the same 
time, the tradition de-noising method cannot obtain good de-noising performance. In the vehicle test, 
the vibration signal has typical non-stationary and non-linear characteristics, for which linear 
filtering method is failure. Kernel adaptive filtering transforms the input data to high dimension 
feature space and designs a linear method to solve the nonlinear problem. The proposed method 
uses kernel adaptive filtering to suppress the noise in the vibration signal of the vehicle test under 
norm cost function, which can keep effective under non-stationary and non-linear conditions. The 
simulation and test data processing results show the good performance of the proposed method 
which can apply in the telemetry vibration signal processing. 

Introduction 
Telemetry signal is the main basis for the vehicle interior ballistics analysis and detection, in 

which the vibration signal is the most representative that can directly reflect the response of the 
vehicle structure state under different incentive conditions, and it processing results can be used to 
determine the health status of the vehicle structure [1]. The telemetry signal is often interfered with 
noise during the transmission and reception process by transmitting and receiving equipment and 
the transmission of the external environment influence. The noise in the signal decrease the average 
variance estimation precision in time domain analysis, furthermore, serious noise interference can 
lead to the difficulty of frequency domain analysis and time domain analysis. Therefore, de-noising 
is an important part in the preprocessing of telemetry vibration signal. The analysis of lots of the 
experimental data show that the noise in the telemetry signal is often not a simple Gaussian noise, 
for the high bit error generated during the transmission process also lead to impulse noise. 
Therefore, the noise in the telemetry signal usually shows the mixed noise form of Gaussian noise 
and impulse noise [2]. Tradition de-noising method includes frequency domain filtering, median 
filtering, wavelet de-noising, singular value decomposition (SVD) and empirical mode 
decomposition (EMD) based on local wave analysis, in which the wavelet threshold de-noising 
method is most widely used in engineering. In the de-noising methods, frequency domain filtering 
request signal meets the stationary distribution, median filtering is suitable for impulse noise, the 
wavelet threshold de-noising and SVD needs to set artificial parameters which is difficult to obtain 
ideal performance, EMD de-noising takes the high intrinsic mode function (IMF) as the noise which 
lack of theory basis. Meanwhile, all kinds of the de-noising methods meet the difficulty that to find 
the best combination points of noise suppression and signal loss of detail information. For the 
mixed noise form de-noising, the single de-noising method has poor performance, and in vehicle 
test data detection proves that the telemetry signals often appear non-stationary characteristics [3]. 
Kernel adaptive filtering provides a new method for signal de-noising, which can map the input 
signal to the high dimension feature space to obtain good filtering performance under nonlinear 
condition. By using the kernel adaptive filtering method, a new method of telemetry vibration signal 
de-noising was proposed, which can solve the de-noising problem for mixed noise form of Gaussian 
noise and impulse noise and has good performance for non-stationary telemetry vibration 
de-noising. The computer simulation and experimental data processing results show the 
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effectiveness of the proposed method.  

Basic Principles of Kernel Adaptive Filtering 
Kernel method provides a robust nonlinear parameter modeling method [4]. So far, the kernel 

method has been successfully applied to support vector machine (SVM), kernel principal 
component analysis (KPCA) and Fisher discriminant analysis. The basic idea of kernel methods is 
that mapping the input data to a high dimension feature space by a reproducing kernel, such that the 
inner product in the feature space can be more efficient computed by kernel evaluation. In the 
feature space, the non-linear problem can be solved by linear filtering method if the algorithm can 
be expressed as inner product form, which can avoid the complex computation process. The 
mapping of the input signal and high dimension feature space is shown in Fig.1. Where ϕ is the 
feature mapping and ( )ϕ u is the feature vector in the feature space, thus the inner product can be 
expressed by kernel as follow 

( ) ( ) ( , )T kϕ ϕ ′=u u u u                                                           (1) 

 

Fig.1 Nonlinear mapping from input space to feature space 
The inner product space and reproducing kernel Hilbert space (RKHS) space is essentially the 

same, and the most commonly used method is the development of kernel filters in RKHS, which 
can implement the linear adaptive filtering by the linear structure of RKHS. Compared with the 
neural network, the kernel adaptive filter has universal approximation ability and convex 
optimization feature, and has no local minimum. Kernel adaptive filtering is a memory intensive 
operation and the computational complexity with dimension exponential growth. However, under 
the limited input data, kernel adaptive filtering method can not only complete data processing 
off-line, also can solve the problem of learning online.  

Adaptive filter algorithm

Function estimator

 

Fig.2 Basic principle of LMS adaptive filter 
In the traditional adaptive filtering algorithm, LMS algorithm is robust, simple structure and the 

most commonly used, if the problem to be solved is linear problems, LMS usually can get the 
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desired convergence performance. Fig.2 shows the typical LMS filtering block diagram [5]. Let the 
input-output sample data is { }(1), (1)du ,{ }(2), (2)du ,…，{ }( ), ( )N d Nu , there has continuous input 

and output mapping relations between continuous samples :f U R→ . As long as the filtering 
algorithm is fit to the mapping relationship, the LMS adaptive filter can complete the fitting, 
identification and classification etc. 

LMS algorithm is usually to minimize the empirical risk objective function to achieve the 
optimal function of the parameters of the estimator, which is to obtain the optimal filter weights, the 
empirical risk cost function is 

2
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T
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J d i i
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 = − ∑w w u                                                    (2) 

According to the stochastic gradient descent algorithm, the LMS can update the weight coefficient 
using the instantaneous gradient as follow 
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                                                 (3) 

Thus the instantaneous gradient at iterative times i is 
( ) ( ) ( ) ( -1) ( )TJ i d i i i ∇ = - w u w u                                                 (4) 

According to the steepest descent algorithm, the LMS algorithm can be expressed as follow 
( ) ( 1) ( ) ( ) ( 1) ( )Ti i i d i i iµ  = − + − − w w u w u                                         (5) 

Where µ is the study step size which controls the convergence rate and the convergence precision 
of LMS adaptive filtering. If the instantaneous error is defined as follow 

( ) ( ) ( 1) ( )Te i d i i i= − −w u                                                        (6) 
Then the update formula of the LMS algorithm can be written as [6] 

( ) ( 1) ( ) ( )i i e i iµ= − +w w u                                                       (7) 
LMS algorithm assumes that the filter is a linear finite impulse response filter, if the mapping 

relationship between the input and output samples is highly non-linear, and then the performance of 
LMS algorithm will be drastically decreased. According to the principle of kernel adaptive filtering, 
if the samples can be mapped to high dimension feature space, the iterative algorithm can 
implement as linear problem. Let the mapping relationship is ( ) ( ( ))i iϕ→u u , for the sake of 
simplicity, let ( ) ( ( ))i iϕ= uϕ , thus in the high dimensional space, a new input and output sample 
sequence is obtained as{ }( ), ( )i d iϕ . The LMS algorithm can be used in the high dimensional feature 
space as follow 

( ) ( ) ( 1) ( )Te i d i i i= − −ω ϕ                                                        (8) 
( ) ( 1) ( ) ( )i i e i iµ= − +ω ω ϕ                                                       (9) 

However, the dimension of ϕ in the feature space is too high and implicit expression. Therefore, an 
alternative method is needed to complete the calculation, and the iterative process of the iterative 
Eq.9 can be obtained the follows conclusion. 
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In Eq.10, it is assumed that (0) 0=ω , which can meet most of the application conditions. If the 
system get a new input, the output of the system can be expressed as inner product form as follow. 
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In this way, the output of the filter can be evaluated very efficiently by using the kernel technique in 
the input space. 

1
( ) ( ) ( ) ( ( ) ( ))

N
T

j
i u e j k j uµ

=

′ ′= ∑ω jjj                                                (12) 

In kernel adaptive filtering, it is no longer involved to update the weights, the filtering operator is 
completed by all previous estimate error and kernel evaluation function. Kernel adaptive filtering 
algorithm only requires the inner product operation. The algorithm can save a lot of time, but 
regardless of the LMS algorithm in the input space and the feature space is essentially the same. 

Let if is the nonlinear mapping of the input and output, the following sequential learning rules 
can be formed for the kernel adaptive filtering algorithm. 
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Eq.13 called kernel LMS (KLMS) algorithm, which is the LMS algorithm in the RHKS. KLMS 
assigns a new kernel unit to the new training data, and the center of the new kernel unit is the input 
data ( )iu , the kernel coefficient is ( )e iµ . In the training process, the coefficient and the center are 
stored in the memory. Fig.3 shows the KLMS algorithm structure. Where ( )ia is the coefficient 
vector at the iterative times i  and ( )ija is the j th− component of ( )ia . The system output for the 
input ucan be given by 

1
( ) ( ) ( ( ), )

i

j
f e j k jµ

=

= ∑u u u                                                      (14) 

 
Fig.3 The network topology of KLMS at iterative times i  
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De-noising Based on KLMS 
Kernel adaptive filtering is applied to non-linear mapping, which has a unique advantage in the 

processing of telemetry environment parameters. Telemetry environmental parameters de-noising 
can take the collected data as the time sequence, which is the sequential learning sample, to realize 
parametric fitting to complete de-noising by using kernel adaptive filtering. Let telemetry vibration 
signal is 

( ) ( ) ( )x t x t v t= +                                                              (15) 
Where ( )x t is the observed signal, ( )x t is the useful signal and ( )v t is the noise which commonly 
is the mixed noise of Gaussian noise and impulse noise. Let the cost function is 

[ ]21( ) ( ) ( )
2

J w y t x t= −                                                         (16) 

Where ( )y t is the output of the filter. Based on the cost function Eq.16, the vibration signal can be 
de-noising by KLMS, where the kernel function is selected as Gaussian kernel as follow 

2( , ) expk α ′ ′= − − u u u u                                                    (17) 

The simulation frequency hopping signal is used to analyze the performance of the de-noising 
method, which has typical non-stationary characteristic. The simulation telemetry vibration signal 
has the practical application background, that is, when the vehicle structure is abnormal, the 
frequency of the acquisition signal is changed. The sample frequency of the simulation signal is 

2048sf = Hz, the center frequency of two sine signal are 1 5f = Hz and 2 25f = Hz respectively. 
Let the SNR=3dB. The waveforms before de-noising by KLMS are shown in Fig.4 and Fig.5 
respectively. Fig.5 shows KLMS has good de-noising performance for the simulation signal. 
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Fig.4 Simulation frequencey hopping signal with noise 
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Fig.5 Simulation frequencey hopping signal after de-noising 

To further illustrate the practicality of the algorithm, high frequency vibration signal collected by 
a vehicle test is used for processing, which the sample frequency is 5kHz and waveform and 
frequency spectrum is shown in Fig.6. Fig.7 shows the de-noising result of KLMS. The results 
show that KLMS can suppress the noise in the vibration signal effectively. 
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Fig.6 High frequency vibration signal and its frequency spectrum 
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Fig.7 High frequency vibration signal after de-noising 

Conclusion 
This work proposed a de-noising method for telemetry signal based on kernel adaptive filtering. 

For the telemetry environmental parameters in the vehicle test is often interference with mixed 
noise, the proposed method can obtain good de-noising performance under non-stationary and 
non-linear condition, which has practical application significance in the telemetry vibration signal 
de-noising processing. The effectiveness of the proposed method is proved by the simulation signal 
and the measured signal processing results. 
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