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Abstract.  This paper investigates  the diffusion risk model with constant interest. The 
Laplace-Stieltjes transforms (LST) of some exit times of the risk process are obtained. 

1 Introduction 
The diffusion risk model with constant interest is described by 

           
0

( ) ( ( )) ( ),
t

U t u C U s ds B ts= + +∫                    (1) 

where u  denotes the initial capital, ( ) , 0C x c rx c= + > represents the  premiums income pre unit 
time and 0r > is the constant force of interest.  { ( ), 0}B t t ≥  is a standard Brownian motion and 

0s >  is the diffusion coefficient. The model (1) is a diffusion risk model with interest which 
represents that the company can earn investment income at a constant force of interest r  when the 
surplus is positive. When the surplus turns negative, the company is allowed to borrow money at the 
same force of interest r . 

For any interval [ , ]b a , where b u a< < , define the first hitting time of the upper barrier a  for the 
risk process { ( ), 0}U t t ≥  to be 

inf{ 0, ( ) },
, ( ) 0.a

t U t a
T

if U t a for all t
≥ =

=  ∞ ≠ ≥
 

Correspondingly, define the first hitting time of the lower  barrier b for the risk process { ( ), 0}U t t ≥  
to be 

inf{ 0, ( ) },
, ( ) 0.b

t U t b
T

if U t b for all t
≥ =

=  ∞ ≠ ≥
 

Then ,a b a bT T T= ∧  is the first exit time of the process { ( ), 0}U t t ≥  from the interval ( , )b a . This 
paper investigates the Laplace-Stieltjes transforms (LST) of the exit times. The similar subject of this 
paper is considered by some authors. Alili, Patie and Pedersen[1] mainly considered the first hitting 
time of an Ornstein-Uhlenbeck process. Chiu and Yin[2-4] investigated some passage times of the 
reserve-dependent risk process and the spectrally negative Lévy process. dos Reis[5] and Gerber[6] 
mainly studied some stopping times of the classical risk process. Jacobsen and Jensen[7] considered 
the exit times for a class of piecewise exponential Markov processes with two-sided jumps. Kella and 
Stadje[8] and Perry and Stadje[9] mainly some exit times of the processes with compound Poisson 
process. 

The  remainder of the paper is organized as follows. In section 2 we give some preliminaries of 
the diffusion process with constant interest. In section 3 we obtain the LST of some exit times. 

2 Preliminaries 
The model (1) is a time-homogeneous Markov process (see Klebaner[10]) taking values in with 
generator A  that satisfies 
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2

( ) ( ) ( ) ( )
2

Af x f x c rx f xs ′′ ′= + +  

where f  belongs to the domain ( )D A of the generator A  of { ( ), 0}U t t ≥ .  Furthermore ( ( ), )U t t  is 
also Markovian with generator  A′  that satisfies 

( , ) ( , ) ( , ).A h x t Ah x t h x t
t
∂′ = +
∂

 

If  ( , )h x ⋅  has a continuous first derivative for  each x and  for each t , ( , )h t⋅  is in the domain of A , 
then ( , ) ( )h x t D A′∈ . Denote by { ( ),0 }tF U s s ts= < ≤ the natural filtration. For later use, we give 
the following Lemma. 

Lemma 2.1  If ( , )h x t  is a twice continuously differentiable in x  and once in  t  function with 
bounded first derivative in x , then ( , ) ( )h x t D A′∈  and furthermore  

       
0

( ) ( ( ), ) ( ( ), )
t

hM t h U t t A h U s s ds′= − ∫                      (2) 

is a martingale. 
In order to obtain the LST of the first exit time ,a bT , for any   0α > , we will try to  find a solution 

to the equation 
( ) ( ),Af x f xα=  

 
that is 

       
2

( ) ( ) ( ) ( ).
2

f x c rx f x f xs α′′ ′+ + =                                  (3) 

 (3)  is a second order linear differential equation, which has two positive independent solutions 
1 2,f f  such that 1f  is strictly decreasing and 2f  is strictly increasing. Then every solution is a linear 

combination of the form 
1 1 2 2( ) ( ),C f x C f x+  

where 1 2,C C  are arbitrary constants. From Cai et al.[11], we know that 
2 2

1 2 2

( ) 1 1 ( )( ) exp{ } ( , , ),
2 2 2

c rx c rxf x U
r r r

α
s s
+ +

= − +  

and 
2 2

2 2 2

( ) 3 ( )( ) ( ) exp{ } (1 , , ),
2 2

c rx c rxf x c rx M
r r r

α
s s
+ +

= + − +  

where M and U are called the confluent hypergeometric functions of the first and second kind 
respectively. It is easy to verify that 1( ) 0f x →  as x →+∞ . More details on confluent  
hypergeometric functions can be found in Abramowitz and Stegun[12]. 

3  The LST of some exit times 

Theorem  3.1  Given  that the initial state c a u
r

− < < , the LST of the time to hit a  is given by 

                  1

1

( )[ ] .
( )

aT
u

f uE e
f a

α− =                                                 (4) 

Proof.   Assume that ( , )h x t  takes the form  1( , ) ( )th x t e f xα−= ,  it follows from Lemma 2.1 that 

1( , ) ( )th x t e f xα−=  is in the domain of  A′  and 

( , ) ( , ) ( , ) 0.A h x t Ah x t h x t
t
∂′ = + =
∂

 

By Dynkin's  formula,  we conclude that 
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1 1 0
( ( )) ( (0)) ( ( ), ) ( (0),0) ( ( ), )

tte f U t f U h U t t h U A h U s s dsα− ′− = − − ∫  

is a zero-mean martingale. Thus, for stopping time aT  and initial condition u , we have that 
( )

1 1[ ( ( ))] ( ).at T
u aE e f U t T f uα− ∧ ∧ =                       (5) 

Because 1( )f x  is bounded on the range of possible values of  { ( ), 0}aU t T t∧ ≥ , letting t →+∞  in (5), 
dominated convergence theorem yields 

1 1[ ( ( )] ( ),aT
u aE e f U T f uα− =  

so that 
1

1

( )[ ] .
( )

aT
u

f uE e
f a

α− =  

 
This completes the proof.  

Theorem  3.2  For  b u a< < , the LST of the first exit time from the upper barrier  a  is given by 

                  3

3

( )[ 1( )] ,
( )

aT
u a b

f uE e T T
f a

α− < =                                                 (6) 

Where 3 1 1 2 2( ) ( ) ( )f x C f x C f x= + and 1 2,C C  satisfy 3 1 1 2 2( ) ( ) ( ) 0f b C f b C f b= + = . 
Proof.   It follows from Lemma 2.1 that 3( , ) ( ) th x t f x e α−=  is in the domain of A′  and 

( , ) ( , ) ( , ) 0.A h x t Ah x t h x t
t
∂′ = + =
∂

 

By Dynkin's  formula,  we conclude that 

3 3 0
( ( )) ( (0)) ( ( ), ) ( (0),0) ( ( ), )

ttf U t e f U h U t t h U A h U s s dsα− ′− = − − ∫  

is a zero-mean martingale. Thus, for stopping time ,a bT  and initial condition u , we have that 
,( )

3 , 3[ ( ( )) ] ( ).a bt T
u a bE f U t T e f uα− ∧∧ =                    (7) 

Because 3( )f x  is bounded on the range of possible values of ,{ ( ), 0}a bU t T t∧ ≥ , letting t →+∞  in 
(7), dominated convergence theorem yields 

,
3 , 3[ ( ( )) ] ( ),a bT

u a bE f U T e f uα− =  
hence 

3 3 3[ ( ( )) 1( )] [ ( ( )) 1( )] ( ),a bT T
u a a b u b b aE f U T e T T E f U T e T T f uα α− −< + < =  

thus 
3 3[ ( ) 1( )] ( ),aT

u a bE f a e T T f uα− < =  
so that 

3

3

( )[ 1( )] .
( )

aT
u a b

f uE e T T
f a

α− < =  

This completes the proof.  
     Using the same argument, we can obtain the following Theorem. 
Theorem  3.3  For  b u a< < , the LST of the first exit time from the lower barrier  b  is given by 

                  4

4

( )[ 1( )] ,
( )

bT
u b a

f uE e T T
f b

α− < =                                                 (8) 

Where 4 1 1 2 2( ) ( ) ( )f x C f x C f x= + and 1 2,C C  satisfy 4 1 1 2 2( ) ( ) ( ) 0f a C f a C f a= + = . 
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