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Abstract. The interaction between wave and the obstacle in water is a common problem in ocean 
engineering. The article use a new numerical method, Boundary Collocation Method (BCM) based 
on Eigenfunction Expansion Method (EEM), to solve the two-dimensional wave problems between 
wave and obstacle. The obstacle is no longer confined to the rectangle, but the submersed wedge 
obstacle. The change of the wave velocity potential will be analysed.  

1. Introduction 
The study of wave propagation through obstacles is of considerable importance for wave power 

device and coastal engineering. Many studies have been devoted to wave propagation theories 
based on analytic and numerical methods (Stokes, 1947[1]; Wen, 1964a[2], 1964b[3]; Alliney, 1981[4]; 
Aimi[5] et al., 2011). As Stoker(1957)[6] pointed out, during the wave propagation through obstacle, 
the wave’s potential function will have a singularity to make the amplitude tend to infinity. So it is 
particularly complex. 

Generally the analytic and numerical methods are available for solving the wave propagation. 
However, both methods have their advantages and disadvantages. The analytic method can solve 
the problems only with several simple boundaries (Wu et al., 1995[7]; Zheng et al., 2004[8]). The 
numerical methods, particularly the hybrid method of Boundary Element Method (BEM) and EEM 
have been widely used for the numerical solutions of potential problems in recent years. In the case 
of small wave problem, BEM can be used to express the solution of the Laplace equation by 
boundary conditions and boundary discretization (Alliney, 1981[4]). It brings difficulties in solving 
practical problems in ocean engineering.  

The attraction of BCM lies on its applicability to the problems with irregular domains and 
arbitrary boundary conditions, its ease of programming, and its conceptual simplicity. Applications 
of BCM for the analysis of plates and shells can be found in the paper by Hutchinson(1991)[9] and 
Zheng et al. (2007)[10] . Previously it is applied to various elastic problems and heat transfer 
problems (Ramachandran and Gunjal, 2009[11]). Reichel and Chapman(1986)[12] apply this idea to 
edge wave problems.  
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Fig. 1. The Physical model. 
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In this paper, to avoid the complexity of the calculation and solve problems of submersed wedge 
obstacle, a hybrid method of BCM and EEM is used.    

2. Mathematical Model 
Considering a submersed wedge obstacle fixed on the surface, Fig. 1 shows the physical model 

and the Cartesian coordinate system. The negative x -axis directs right to the sea, while the positive 
z -axis takes vertically upward from the water surface. Here h  denotes the depth of the sea, and 
d  is the draft of the obstacle. The obstacle boundary can be expressed as a function )(xf . The 
income wave propagate through obstacle from region I to region II with velocity c (here area I and 
area II are divided by dotted line in Fig. 1). 

Assuming the flow motion is irrotational, the waves are of small amplitude and the fluid is 
incompressible and inviscid. ( , , )x z tΦ  defines the velocity v = ∇Φ . For simple waves, any point 
moves at a fixed frequency ω . The changes of ( , , )x z tΦ to time t should be presented in harmonic 
forms iω( , , ) Re{ ( , )e }tx z t x zφΦ = . 

Where, ( , )x zφ  is a complex potential function independent of time. The wave motion has to 
satisfy conditions at the obstacle boundaries, free surface and the seabed, respectively. 
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Eq. (2) is the linear wave free surface boundary condition. Instead of the actual free surface, it 
applied to the undisturbed surface. Eq. (3) is the boundary condition on the impermeable and 
immovable seabed. The obstacle boundary can be set as tan ( 0)
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. In addition, we have 

a regularity condition at the negative infinity: lim ( , ) , [ h,0]
x

x z zφ
→-∞

< +∞ ∈ - .                       

3. Solution to Potential 
3.1 Expression for Potential  
To find a method widely used in wave problems, the function ( , )x zφ  satisfying the bottom 
condition Eq. (3) and the free surface condition Eq. (2) has been given by Alliney (1981)[4] as 
follows: 
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(5) 
Where, 0 , ja a  and ( 1, 2 )jb j n= 

are complex constants. By considering the infinity condition, take 

0jb =  for any j . 0k  and ( 1,2 )jk j n= 
 follow the relations:
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For simplicity, the constant A  can be set as 
0

1A
cosh( h)k

= . 

Then to this wave problem in regionⅠandⅡ, Eq. (5) can be written as: 
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Eq. (6) and Eq.(7), the analytic solution satisfying the bottom condition and the free surface 
condition, is the basis equation. To obstacle boundary, the BCM will be used to obtain more 
accurate results.  
3.2 BCM for the Unknown Coefficients 
  Select the appropriate points on boundary, which satisfy the condition at 0x < and 0x > . 

1 '( , )R x zφ with 1Nj = and 2 '( , )R x zφ with 2Nj = denotes the numerical result of the potential. To 
determine the 1 2 2N N+ +  unknown coefficients, considering the continuity conditions: 

 

1) the continuity condition of normal velocity in 0x = ： 1 2 , ( 0, )R R x h z d
x x
φ φ∂ ∂

= = - < < -
∂ ∂

                        

2) the continuity condition of pressure in 0x = ： 1 2 , ( 0, )R R x h z dφ φ= = - < < -                            
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Fig. 2 Collocation points on barrier boundary 
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Fig. 3 The normal velocity on barrier boundary 
 ( 2d = , Projection to the x axis) 
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  Take 1 1 1( )M M N< points in region Ⅰ and 2 2 2( )M M N<  points in region Ⅱ , it will be 

1 2M M+ linear equations to obtain 1 2M M+ coefficients. To the other coefficients, 1 2 1 2 2N N M M+ - - +  
adjusted points are set on obstacle (Fig. 2).  
  All of the coefficients will be obtained from the linear equations. But the obstacle boundary 
condition Eq.(4) is only satisfied at 1 2 1 2 2N N M M+ - - +  chosen points. There must be errors on 
obstacle. 

 

4. Numerical results and discussion 
4.1 Numerical results  

Set 10m, 1.25rad / s, tan 4h ω θ= = = ，and obstacle boundary 4 ( 0)
( )

4 ( 0)
x d x

F x
x d x

- - <
=  - >

. Set 2d =  and 

1 2 11N N= = , 1 2 8M M= = ; the value of j from 1 to 11 and i′ from 1 to 8. So 4 points can be set in 
regionⅠand 4 points in region Ⅱ to obtain the coefficients. Fig. 3 shows the absolute error 1,R nφ′  
and 2,R nφ′ . 

From Fig.3, the maximum absolute error is no more than 0.025 in regionⅠand 0.03 in region
Ⅱ,which have a high accuracy.  

While, set 3d = , 1 2 13N N= = , 1 2 8M M= = ，and j  value from 1 to 13，i′  from 1 to 8. So 6 points 
can be set in regionⅠand 6 points in regionⅡ. Fig. 4 shows the absolute error 1,R nφ′  and 2,R nφ′ . 

From Fig.4, the maximum absolute error is no more than 0.017 in regionⅠand 0.022 in region
Ⅱ,which have a higher accuracy. Fig. 5 shows the velocity potential on free surface. From the 
curve,wave propagate from regionⅠtoⅡthrough the obstacle will lead a amplitude reduction 
because of the reflected wave generated by obstacle. The deeper the obstacle, the larger the 
reduction. 
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Fig. 4 The normal velocity on barrier boundary 
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4.2 Feasibility Analysis  
To verify its feasibility, the relative error are discussed. The relative error is 

, ,

, ,1 1
R n R n n

r
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φ φ φ
ε
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′ ′-
= =

+ +

. When 2d = ,the relative error is no more than 0.02 in regionⅠand 0.025 

in regionⅡ. When 3d = ,the relative error is no more than 0.014 in regionⅠand 0.017 in regionⅡ. 
It proves the feasibility of the method. 

5. Conclusions 
  The application of the hybrid method of BCM and EEM to wave problems proves its validity. 
Finding the position of the collocation points on obstacle is the key and difficulty of the method. As 
long as collocating appropriate points, the solutions can be obtained. The study provides the theory 
basis and feasible measure of the hybrid method for solving the more complicated 2D wave 
problems. It can be used in not only wedge obstacle, but also arbitrary obstacle.  
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