
An algorithm for assembly job shop scheduling problem
Xiao-Qin Wan1,2,a and Hong-Sen Yan1,2,b

1School of Automation, Southeast University, Nanjing 210096, China;
2MOE Key Laboratory of Measurement and Control of Complex Systems of Engineering, Southeast

University, Nanjing 210096, China.
axqwan87@163.com, bhsyan@seu.edu.cn

Keywords: Assembly, job shop, tardiness, earliness.

Abstract. The problem of assembly job shop scheduling (AJSS) is studied with the objective of
minimizing the weighted sum of earliness and tardiness penalties. An insertion search algorithm is
proposed to solve the problem. The operations of job with tardiness or earliness are shifted left or
right to optimize the sequence. Simulation results validate the effectiveness of the proposed model
and algorithm.

Introduction
An assembly job shop (AJS) refers to a shop which involves both processing and assembly

operations. It is assumed that each job has a tree structure of component and subassemblies that
assembly together to build up the end job [1], as shown in Fig.1. These subassemblies in turn have
sub-sub-assemblies and so on. These are called as multi level assembly jobs. Higher-level
subassembly cannot be assembled until all preceding lower-levels components and/or
subassemblies are completed. In an AJS, subassemblies/assemblies undergo operations in a serial
fashion as per the precedence constrains and wait for the arrival of its mating components at the
assembly station, for the assembly operation to start [2]. As the number of levels increases the
complexity of scheduling also increases. This makes the AJS problems quite challenging.

7

10

1198

6

4

3

2

1

5

Assembly/subassembly

Operation

Fig. 1 Tree structure of job

Many previous studies have focused on AJS problems. Some Dispatching rules for AJS have
been developed and compared in accordance with several performance measures. Adam, Bertrand
and Surkis [3] developed two priority rules called the relative number of remaining operation (RRO)
and relative remaining processing time (RRP) rules. Philipoom, Russell and Fry [4] proposed a set
of dispatching rules, called important ratio (IR). Adam et al. [5] proposed dynamic due date
assignment procedures for multi-level job structures and investigated the interaction between the
procedures and two priority rules: earliest job due date (JDD) and earliest operation due date
(OPNDD). Reeja and Rajendran [6,7] designed for AJS a class of priority rules termed as developed
two priority rules called operation synchronization data (OSD) and a new version of operation due
date (ODD). Natarajan et al. [8] proposed several dispatching rules with the consideration of
different weights for holding and tardiness of jobs. Some other researches focus on developing
efficient heuristics for AJS. Kim and Kim [9] compared the results of SA and GA methods. With
respect to the objective of minimizing the weighted sum of tardiness and earliness of items, they
found that SA algorithms outperformed GAs in their problems. Wong and Ngan [10] compared the
capability of HGA and HPSO in minimizing the makespan under AJSSP environment with lot
streaming technique.

2nd International Conference on Electronics, Network and Computer Engineering (ICENCE 2016)

© 2016. The authors - Published by Atlantis Press 223

The objective of this paper is to develop an effective algorithm for solving the AJS problem. In
Section 2, the problem formulation is presented. In Section 3, an insertion search is presented.
Computational results are reported and analyzed in Section 4. Conclusions are provided in Section
5.

Problem Description and Formulation
This paper focuses on the problem of AJS scheduling, its main objective being to minimize the

weighted sum of earliness and tardiness penalties of jobs. To present the problem formulation, the
following notations are used:

n : Number of jobs, , 1, ,i j n=  ;
m : Number of machines 1, ,l m= 

iK : Number of operations of job i
iko : The thk operation of job i

iks : Start time of the iko

ikt : Processing time of iko

ikc : Completion time of iko

ic : Completion time of job i

id : Due date of job i

iE : Earliness of job i
iT : Tardiness of job i

M: Large positive number
iα : Earliness penalty of job i
iβ : Tardiness penalty of job i
ikjk lX ′ : If iko precedes jko ′ on machine l, then 1ikjk mX ′ = ; otherwise 0ikjk mX ′ =

The rescheduling problem for assembly job shop is formulated as follows:

()
1

+Min i i i i

n

i
E Tα β

=
∑ (1)

s.t.
()max , 0i i iE d c= − (2)

()max , 0i i iT c d= − (3)
, ,ik ik ikc s t i k− = ∀ (4)

0, ,ikik
s c i k− ≥ ∀


 (5)
, ,0iks i k≥ ∀ (6)

- + (1-) , , , ,jk ik ik jk l jkc c M X t i j k k′ ′ ′≥ ∀ ′ (7)
- + , , , ,ik jk ik jk l ikc c MX t i j k k′ ′ ≥ ∀ ′ (8)

{ }0,1 , , , ,ik jkX i j k k′ ∈ ∀ ′ (9)
Objective (1) is to minimize the total weighted earliness and tardiness penalties. Constraints (2)

and (3) compute the earliness and tardiness of job i respectively. Constraint (4) indicates that means
that once an operation is started, it cannot be preempted until it is completed. Constraint (5) ensures
the precedence relations between operations. Constraint (6) expresses the fact that the start time of
each operation is positive. Constraints (7) and (8) ensure that no more than one operation can be
processed simultaneously by the same machine. Constraint (9) defines the 0-1 integer variable.

224

An Insertion Search Algorithm
An insertion search is developed to optimize the operation sequence. For the job with earliness

or tardiness, extract its operations and then shift right or left without violating the precedent
constraints. The steps of the insertion search are as follows.

Step 1: Select an appropriate dispatching rule to allocate the operations and then the sequence
S and the objective function Z are obtained.

Step 2: Initialize the maximum iteration maxr . Set 1r = .
Step 3: Sort the jobs in the order of decreasing penalty and record in GS . Set 1h = .
Step 4: If the penalty of job ()GS h is greater than zero, record its operations in EQ in

sequence, and label the total number of operations in EQ as P , set 1p = , then go to Step 5;
otherwise, go to step 15.

Step 5: Operations in S which processed by machine l (=1, ,)l m are recorded in vector lG
in sequence. le denotes the total number of elements in lG . Let 1 ←S S .

Step 6: Delete the operation ()EQ p in 1S . Find the minimum position of its succeeding
operations and maximum position of preceding ones in 1S , labeled as UP and DW respectively.

Step 7: Find the machine where ()EQ p assigned and labeled as l . Find the position of ()EQ p
in lG , labeled as d .

Step 8: If job ()GS h with earliness and < ld e , find the position of the operation (at 1d + of

lG) in 1S , labeled as d + , and then go to Step 9; otherwise, go to Step 10.
Step 9: If d UP+ < , insert ()EQ p into the position 1d + + in 1S , then go to Step 12;

otherwise, go to Step 13.
Step 10: If job ()GS h with tardiness and 1d > , find the position of the operation (at 1d − of

lG) in 1S , labeled as d − , and then go to Step 11; otherwise, go to Step 13.
Step 11: If DWd − > , insert ()EQ p into the position d − in 1S , then go to Step 12;

otherwise, go to Step 13.
Step 12: Calculate the objective cost 1Z . If 1Z Z≤ , then 1←S S and 1Z Z← .
Step 13: 1p p← + . If Pp > , go to Step 14; otherwise, go to Step5.
Step 14: +1hh ← . If >h n , go to Step 15; otherwise, go to Step 4.
Step 15: +1r r← . If max>r r , go to Step 16; otherwise, go to Step 3.
Step 16: Stop.

Numerical Tests
To test the effectiveness of the proposed algorithm, a set of instances are generated. The data set

covers the two problem size of 10 and 20, for each of which three types of product structures are
considered: single-level structures, two-level structures, and three-level structures [6,7]. The
number of operations per subassembly is sampled from a discrete uniform distribution in the range
[1, 4]. The processing times for the operations are randomly generated from a uniform distribution
in the range [1, 10], and the unit earliness cost and the tardiness cost are sampled from in the ranges
[1, 4] and [1, 6] respectively. The number of machines {8,10}m∈ . The process routes are
independent and generated randomly. The due date of a product is calculated using the following
formula:

1

iK

i ik
k

d f t
=

 
 
 
 

= ⋅∑

where f is a due date tightness factor [11]. Two values of f are considered in the experiment: 1.5
and 2.

225

The three rules SEFT / ECTτ , TWKR / OSDτ , and WTWKR / LFTτ [8] are selected to generate
the initial scheduling and then followed by the insertion search algorithm. The procedures were
referred to as HS, HT and HW respectively. A GA was included in the computational test for
comparison. The population size is 30 and the number of generations is 300. The crossover and
mutation rates are 0.9 and 0.3 respectively. A random key represent was adopted to represent the
chromosome [12]. A linear crossover and swap mutation were employed here. Comparison results
are presented in Tables 1 and 2.

As shown, the proposed HS algorithm outperforms those of the others. Compared with HW, the
HT algorithm gives better results in 19 of the 24 cases. The selection of the dispatching rules has a
significant impact on the quality of the solutions. For the cases of n=10, the HS and GA algorithms
perform well with respect to single-level structures. As product structure goes complex, the
performance of GA gets worse.

Table 1 Computational results for the algorithms

n m×
算法 f=1.5 f=2

 S1 S1 S3 S1 S1 S3

10×8

 HS 488.6 1316.7 3428.3 285.8 1201.5 3261.9
 HT 572.1 1323.1 3938.1 353.7 1297.5 3524.1
 HW 586.0 1415.3 3479.9 541.8 1470.1 4060.5
 GA 499.8 2162.5 6266.9 431.5 2135.9 6429.5

10×10

 HS 347.4 1202.1 2675.9 242.2 736.5 1935.0
 HT 387.4 1433.2 3288.1 307.7 943.6 2895.9
 HW 417.1 1279.7 3852.3 410.3 1097.1 2826.4
 GA 440.6 1867.5 5511.7 297.8 1588.8 4921.2

Table 2 Computational results for the algorithms

n m×
算法 f=1.5 f=2

 S1 S2 S3 S1 S2 S3

20×8

 HS 2411.5 6757.5 14266.4 1993.9 5951.6 13323.5
 HT 2666.7 6933.2 14377.0 2393.3 6054.4 14612.7
 HW 3095.5 7619.0 16139.4 3175.4 5794.7 14866.6
 GA 3568.1 1134.8 29713.2 2895.5 11010.8 27399.0

20×10

 HS 1832.1 5148.2 11761.5 1413.1 5035.6 10015.6
 HT 1984.8 5870.5 14608.5 1622.3 5624.2 11988.1
 HW 2633.4 5887.4 14043.7 2053.4 6662.0 13293.0
 GA 2591.1 9938.7 26130.0 2101.6 10143.0 23249.8

Conclusion
This paper considers the problem of AJSS with earliness and tardiness penalties. An insertion

search algorithm was developed and tested. The results show that the SEFT / ECTτ and the insertion
search work well for the measures of performance related to the earliness and tardiness.

For further research, the dominance relations of operations are suggested to be investigated in
depth. More efficient heuristic algorithm for the problem is yet to be developed.

Acknowledgements
This work is supported in part by the National Natural Science Foundation of China under Grant
60934008; the Fundamental Research Funds for the Central Universities of China under Grant
2242014K10031; the Priority Academic Program Development of Jiangsu Higher Education
Institutions and the Scientific Research Foundation of Graduate School of Southeast University
under Grant YBJJ1446.

226

Reference
[1] S. Pathumnakul, P.J. Egbelu. An algorithm for minimizing weighted earliness penalty in

assembly job shops. International Journal of Production Economics. 2006, 103(1): 230-245.
[2] M. Omkumar, P. Shahabudeen. Ant colony optimisation for multi-level assembly job shop

scheduling. International Journal of Manufacturing Research, 2009, 4(4): 410-427.
[3] N.R. Adam, , J.W.M. Bertrand, J. Surkis. Priority assignment procedures in multi-level

assembly job shops. IIE Transactions. 1987, 19(3): 317–328.
[4] P.R. Philipoom, R.S. Russell, T.D. Fry. A preliminary investigation of multi-attribute based

sequencing rules for assembly shops. International Journal of Production Research. 1991, 29
(4): 739-753.

[5] N.R. Adam, J.W.M. Bertrand, D.C. Morehead, J. Surkis. Due date assignment procedures with
dynamically updated coefficients for multi-level assembly job shops. European Journal of
Operational Research. 1993, 68(2): 212–227.

[6] M.K. Reeja, C. Rajendran. Dispatching rules for scheduling in assembly jobshop-part 1.
International Journal of Production Research. 2000, 38 (9): 2051-2066.

[7] M.K. Reeja, C. Rajendran. Dispatching rules for scheduling in assembly jobshops-Part 2.
International Journal of Production Research. 2000, 38(10): 2349-2360.

[8] K. Natarajan, K.M. Mohanasundaram, B.S. Babu, S. Suresh, K.A.A.D. Raj, C. Rajendran.
Performance evaluation of priority dispatching rules in multi-level assembly job shops with
jobs having weights for flowtime and tardiness. International Journal of Advanced
Manufacturing Technology. 2007, 31(7-8): 751–761.

[9] J.U. Kim, Y.D. Kim. Simulated annealing and genetic algorithms for scheduling products with
multi-level product structure. Computers & Operations Research. 1996, 23(9): 857–868.

[10] T.C Wong, S.C. Ngan. A comparison of hybrid genetic algorithm and hybrid particle swarm
optimization to minimize makespan for assembly job shop. Applied Soft Computing. 2013,
13(3): 1391-1399.

[11] I. Essafi, Y. Mati, S. Dauzère-Pérès. A genetic local search algorithm for minimizing total
weighted tardiness in the job-shop scheduling problem. Computers & Operations Research.
2008, 35(8): 2599-2616.

[12] J.C. Bean. Genetic algorithms and random keys for sequencing and optimization. ORSA
Journal on Computing. 1994, 6(2):154–160.

227

