

On the performance of balance factors of the dichromatic balanced trees
for massive data

Xiaodong WANG1, a, Daxin ZHU2, b,*

1 Fujian University of Technology, Fuzhou, 350118 China
2 Quanzhou Normal University, Quanzhou, 362000 China

aemail: wangxd13@163.com, bemail:zhudx22@163.com, * Corresponding Author

Keywords: Balanced Trees; Recursive Algorithms; Closed-Form Solutions

Abstract. In this paper, we are interested in minimal number of red-nodes in a red-black tree. An
)log(2 nnO time dynamic programming algorithm is presented first for computing)(ns , the

smallest number of red internal nodes in a red-black tree on n keys. We then improve the
algorithm to a new)(nO time algorithm. Then the algorithm is improved further to some

)log(nO time recursive and nonrecursive algorithms. These improved algorithms finally led to a
closed-form solution of)(ns .

Introduction
The rapid growth of the Internet and World Wide Web led to vast amounts of information

available online. In addition, business and government organizations create large amounts of both
structured and unstructured information which needs to be processed, analyzed, and linked. The
storing, managing, accessing, and processing of this vast amount of data represent a fundamental
need and an immense challenge in order to satisfy needs to search, analyze, mine, and visualize this
data as information. Data-intensive computing is intended to address this need. Previous work in
Data-intensive computing infrastructure demonstrates that certain deadline constrained applications
demand predictable quality of service, often requiring a number of computing resources to be
available over a well defined period, commencing at a specific time in the future; good
requirements for advance reservation.

This paper describes the worst case balance factors of a data structure, a red-black tree, for
storing information on computing resource availability and performing admission control of
ordinary requests and reservations of computing resources. A red-black tree is a special type of
binary tree, used in computer science to organize pieces of comparable data, such as strings or
numbers. The original data structure was invented in 1972 by Rudolf Bayer[2] with its
name ’symmetric binary B-tree’. In a paper entitled ’A Dichromatic Framework for Balanced
Trees’, Guibas and Sedgewick named it red-black tree in 1978, [4].

A red-black tree an be seen as a binary search tree with one extra bit of storage per node: its
color, which can be either red or black. A red-black tree must satisfy the following red-black
properties[5]:

(1) A node is either red or black.
(2) The root is black.
(3) All leaves (NIL) are black.
(4) Every red node must have two black child nodes.
(5) Every path from a given node to any of its descendant leaves contains the same number of

black nodes.
The number of black nodes on any simple path from, but not including, a node x down to a leaf

is called the black-height of the node, denoted)(xbh . By the property (5),the notion of
black-height is well defined, since all descending simple paths from the node have the same number
of black nodes. The black-height of a red-black tree is defined to be the black-height of its root. If

2nd International Conference on Electronics, Network and Computer Engineering (ICENCE 2016)

© 2016. The authors - Published by Atlantis Press 271

we denote the black-height of a red-black tree T as)(Tbh , then for any red-black tree T on n

keys, we have nTbhn log2)(log
2
1

≤≤ .

A dynamic programming algorithm
Let T be a red-black tree on n keys. The smallest number of red internal nodes in a red-black

tree on n keys can be denoted as)(ns . The values of)(ns can be easily observed for the special
case of 12= −kn .

In the general cases, we denote the smallest number of red internal nodes in a subtree of size i
and black-height j to be ,0),(jia when its root red and ,1),(jia when its root black
respectively. For any ijini log2log1/2,1 ≤≤≤≤ , we can denote,















−−−+

−−+−

−−+

−−−+−

≤≤

≤≤

≤≤

≤≤

1,1)}1,(,0),({min=),(
,0)}1,(1,1),({min=),(

,0)}1,(,0),({min=),(
1,1)}1,(1,1),({min=),(

/20
4

/20
3

/20
2

/20
1

jtiajtaji
jtiajtaji

jtiajtaji
jtiajtaji

it

it

it

it

a

a

a

a (1)

Theorem 1
For each ijini log2log1/2,1 ≤≤≤≤ , the values of ,0),(jia and ,1),(jia can be computed

by the following dynamic programming formula.







 +
)},(),,(),,(),,({min=,1),(

),(1=,0),(

4321

1

jijijijijia
jijia

aaaa
a (2)

According to Theorem 1, our algorithm for computing),,(kjia is a standard 2-dimensional
dynamic programming algorithm. By the recursive formula (1) and (2) .

It is obvious that the algorithm requires)log(2 nnO time and)log(nnO space.

The improved algorithms
We have computed)(ns and the corresponding red-black trees using Algorithm 1. Some

pictures of the computed red-black trees with smallest number of red nodes are listed in Fig. 1.
From these pictures of the red-black trees with smallest number of red nodes in various size, we can
observe some properties of)(ns and the corresponding red-black trees as follows.

(1) The red-black tree on n keys with)(ns red nodes can be realized in a complete binary
search tree, called a minimal red-black tree.

(2) In a minimal red-black tree, each level can have at most one red node, and there is at most
one red node on the left spine of the tree.

From these observations, we can improve the dynamic programming formula of Theorem 1
further. The first improvement can be made by the observation (2). Since there is at most one red
node on the left spine of the tree, the black-height of the minimal red-black tree on i keys must be

1)(log1 ++ i , the loop bodies of the Algorithm 1 for j can be restricted to 1)(log= +ij to
1)(log1 ++ i , and thus the time complexity of the dynamic programming algorithm can be reduced

immediately to)(2nO as follows.

272

It is readily seen from observation (1) that every subtree in a minimal red-black tree must be a

complete binary search tree. If the size of a complete binary search tree T is n , then the size of
its left subtree must be

 1}2,{2min12=)(log1log1log +−+− −− nnn nnleft
and the size of its right subtree must be
 1)(=)(−− nleftnnright
Therefore, the minimal range /20 it ≤≤ of the Algorithm 2 can be restricted to)(= ileftt , and

thus the time complexity of the dynamic programming algorithm can be reduced further to)(nO
as follows.

The time complexity of Algorithm 3 is reduced substantially to)(nO , but the space costs remain

unchanged. The algorithm can be improved further in a different point of view. If we list the
sequence of the values of)(ns as a triangle ijijit ,21,2,=,0,1,=),,( as shown in Table 1,
then we can observe some interesting structural properties of)(ns .

273

It is readily seen from Table 1 that the values in each row have some regular patterns as follows.
(1) For the elements 12),1,(−≤≤ ijjit in each row 2,3,=i , we have,)1,(=),(jitjit − .
(2) For the elements ii jjit 2<),2,(1 ≤− in each row 2,3,=i , we have,

1)21,(=),(1 +−− −ijitjit .
In the insight of these observations, a recursive algorithm for computing the values of),(jit

can be implemented as the following Algorithm 4.

It can be seen from Table 1 that for any positive integer n , if)(=),(nsjit , then

+ 1)(log= ni and 22= 1)(log +− + nnj . In a call of Algorithm 4,
2)2,1)(log(1)(log +−+ + nnnt will return the value of)(ns . It is obvious that the recursive depth

of the Algorithm 4 is at most + 1)(log n . Therefore, Algorithm 4 requires only)log(nO time.

The closed-form solution of)(ns

From Table 1 and Algorithm 4 we can observed further that the values of)(ns satisfy a simple
recursive formula,








+−

+
11)(=)(2

)(=1)(2
nsns

nsns
 (3)

Let 1)(=)(−nsnh , then 1)(=)(+nhns , and)(nh satisfies,







 ++
)(=)(2

1)(=1)(2
nhnh

nhnh
 (4)

Based on the discussions above, we finally can find a closed-form solution of)(ns .
Theorem 2
Let n be the number of keys in a red-black tree, and its binary expression be i

i
n

i
bn 2= log

0=∑ ,
then)(ns can be computed by the following formula,

11)(=)(−+nans (5)

274

where i

n

i
bna ∑ log

0=
=)(is the binary weight of n .

 Proof.
According to Algorithm 6, we can conclude that

1)(=1=)(log

0=
−−∑  nabnh i

n

i
.

Therefore, 11)(=1)(=)(−++ nanhns .
The proof is complete. ■
If the number of n can fit into a computer word, then)(na can be computed in (1)O time.

For example, the C programs for computing)(na can be found in [6] as follows.

Therefore, by using formula (5) we can compute)(ns in (1)O time.

Acknowledgement
This work was supported in part by the Quanzhou Foundation of Science and Technology under

Grant No.2013Z38, Fujian Provincial Key Laboratory of Data-Intensive Computing and Fujian
University Laboratory of Intelligent Computing and Information Processing.

References

[1] Arne Andersson, Balanced search treesmade simple, In Proceedings of the Third Workshop on
Algorithms and Data Structures, vol. 709 of Lecture Notes in Computer Science, 1993, pp. 60-71.

[2]R. Bayer, Symmetric binary B-trees: Data structure and maintenance algorithms, Acta
Informatica, 1(4), 1972, pp. 290-306.

[3] Cormen T.H., Leiserson C.E., Rivest R.L., Stein C., Introduction to algorithms, 3rd ed., MIT
Press, Cambridge, MA, 2009.

[4] Leo J. Guibas and Robert Sedgewick, A dichromatic framework for balanced trees, In
Proceedings of the 19th Annual Symposium on Foundations of Computer Science, 1978, pp. 8-21.

[5]Robert Sedgewick, Left-leaning Red? CBlack Trees, http://www.cs.princeton.edu/
rs/talks/LLRB/LLRB.pdf

[6] Henry S. Warren, Hacker’s Delight, Addison-Wesley, second edition, 2002.

[7] Mark Allen Weiss, Data Structures and Problem Solving Using C++, Addison-Wesley, second
edition, 2000.

275

