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Abstract. In this paper, we are interested in minimal number of red-nodes in a red-black tree. An 
)log( 2 nnO  time dynamic programming algorithm is presented first for computing )(ns , the 

smallest number of red internal nodes in a red-black tree on n  keys. We then improve the 
algorithm to a new )(nO  time algorithm. Then the algorithm is improved further to some 

)log( nO time recursive and nonrecursive algorithms. These improved algorithms finally led to a 
closed-form solution of )(ns . 

Introduction 
The rapid growth of the Internet and World Wide Web led to vast amounts of information 

available online. In addition, business and government organizations create large amounts of both 
structured and unstructured information which needs to be processed, analyzed, and linked. The 
storing, managing, accessing, and processing of this vast amount of data represent a fundamental 
need and an immense challenge in order to satisfy needs to search, analyze, mine, and visualize this 
data as information. Data-intensive computing is intended to address this need. Previous work in 
Data-intensive computing infrastructure demonstrates that certain deadline constrained applications 
demand predictable quality of service, often requiring a number of computing resources to be 
available over a well defined period, commencing at a specific time in the future; good 
requirements for advance reservation. 

This paper describes the worst case balance factors of a data structure, a red-black tree, for 
storing information on computing resource availability and performing admission control of 
ordinary requests and reservations of computing resources. A red-black tree is a special type of 
binary tree, used in computer science to organize pieces of comparable data, such as strings or 
numbers. The original data structure was invented in 1972 by Rudolf Bayer[2] with its 
name ’symmetric binary B-tree’. In a paper entitled ’A Dichromatic Framework for Balanced 
Trees’, Guibas and Sedgewick named it red-black tree in 1978, [4].  

A red-black tree an be seen as a binary search tree with one extra bit of storage per node: its 
color, which can be either red or black. A red-black tree must satisfy the following red-black 
properties[5]: 

(1) A node is either red or black. 
(2) The root is black. 
(3) All leaves (NIL) are black. 
(4) Every red node must have two black child nodes. 
(5) Every path from a given node to any of its descendant leaves contains the same number of 

black nodes. 
The number of black nodes on any simple path from, but not including, a node x  down to a leaf 

is called the black-height of the node, denoted )(xbh . By the property (5),the notion of 
black-height is well defined, since all descending simple paths from the node have the same number 
of black nodes. The black-height of a red-black tree is defined to be the black-height of its root. If 
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we denote the black-height of a red-black tree T  as )(Tbh , then for any red-black tree T  on n  

keys, we have nTbhn log2)(log
2
1

≤≤ . 

A dynamic programming algorithm 
Let T  be a red-black tree on n  keys. The smallest number of red internal nodes in a red-black 

tree on n  keys can be denoted as )(ns . The values of )(ns  can be easily observed for the special 
case of 12= −kn . 

In the general cases, we denote the smallest number of red internal nodes in a subtree of size i  
and black-height j  to be ,0),( jia  when its root red and ,1),( jia  when its root black 
respectively. For any ijini log2log1/2,1 ≤≤≤≤ , we can denote, 
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Theorem 1  
For each ijini log2log1/2,1 ≤≤≤≤ , the values of ,0),( jia  and ,1),( jia  can be computed 

by the following dynamic programming formula.  
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According to Theorem 1, our algorithm for computing ),,( kjia  is a standard 2-dimensional 
dynamic programming algorithm. By the recursive formula (1) and (2) .  

It is obvious that the algorithm requires )log( 2 nnO  time and )log( nnO  space. 

The improved algorithms 
We have computed )(ns  and the corresponding red-black trees using Algorithm 1. Some 

pictures of the computed red-black trees with smallest number of red nodes are listed in Fig. 1. 
From these pictures of the red-black trees with smallest number of red nodes in various size, we can 
observe some properties of )(ns  and the corresponding red-black trees as follows. 

(1) The red-black tree on n  keys with )(ns  red nodes can be realized in a complete binary 
search tree, called a minimal red-black tree. 

(2) In a minimal red-black tree, each level can have at most one red node, and there is at most 
one red node on the left spine of the tree. 

From these observations, we can improve the dynamic programming formula of Theorem 1 
further. The first improvement can be made by the observation (2). Since there is at most one red 
node on the left spine of the tree, the black-height of the minimal red-black tree on i  keys must be 

1)(log1 ++ i , the loop bodies of the Algorithm 1 for j  can be restricted to 1)(log= +ij  to 
1)(log1 ++ i , and thus the time complexity of the dynamic programming algorithm can be reduced 

immediately to )( 2nO  as follows. 
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It is readily seen from observation (1) that every subtree in a minimal red-black tree must be a 

complete binary search tree. If the size of a complete binary search tree T  is n , then the size of 
its left subtree must be  

 1}2,{2min12=)( log1log1log +−+− −− nnn nnleft  
and the size of its right subtree must be  
 1)(=)( −− nleftnnright  
Therefore, the minimal range /20 it ≤≤  of the Algorithm 2 can be restricted to )(= ileftt , and 

thus the time complexity of the dynamic programming algorithm can be reduced further to )(nO  
as follows. 

 

 
The time complexity of Algorithm 3 is reduced substantially to )(nO , but the space costs remain 

unchanged. The algorithm can be improved further in a different point of view. If we list the 
sequence of the values of )(ns  as a triangle ijijit ,21,2,=,0,1,=),,(   as shown in Table 1, 
then we can observe some interesting structural properties of )(ns . 
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It is readily seen from Table 1 that the values in each row have some regular patterns as follows. 
(1) For the elements 12),1,( −≤≤ ijjit  in each row 2,3,=i , we have, )1,(=),( jitjit − . 
(2) For the elements ii jjit 2<),2,( 1 ≤−  in each row 2,3,=i , we have, 

1)21,(=),( 1 +−− −ijitjit . 
In the insight of these observations, a recursive algorithm for computing the values of ),( jit  

can be implemented as the following Algorithm 4. 

 
  
It can be seen from Table 1 that for any positive integer n , if )(=),( nsjit , then 

+ 1)(log= ni  and 22= 1)(log +− + nnj . In a call of Algorithm 4, 
2)2,1)(log( 1)(log +−+ + nnnt  will return the value of )(ns . It is obvious that the recursive depth 

of the Algorithm 4 is at most + 1)(log n . Therefore, Algorithm 4 requires only )log( nO  time. 

The closed-form solution of )(ns  

From Table 1 and Algorithm 4 we can observed further that the values of )(ns  satisfy a simple 
recursive formula, 
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Let 1)(=)( −nsnh , then 1)(=)( +nhns , and )(nh  satisfies, 
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Based on the discussions above, we finally can find a closed-form solution of )(ns . 
Theorem 2  
Let n  be the number of keys in a red-black tree, and its binary expression be i

i
n

i
bn 2= log

0=∑ , 
then )(ns  can be computed by the following formula, 

11)(=)( −+nans      (5) 
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where i

n

i
bna ∑ log

0=
=)(  is the binary weight of n . 

 Proof. 
According to Algorithm 6, we can conclude that 

1)(=1=)( log

0=
−−∑  nabnh i

n

i
. 

Therefore, 11)(=1)(=)( −++ nanhns . 
The proof is complete. ■ 
If the number of n  can fit into a computer word, then )(na  can be computed in (1)O  time. 

For example, the C programs for computing )(na  can be found in [6] as follows. 

 
 
Therefore, by using formula (5) we can compute )(ns  in (1)O  time. 
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