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Abstract. In this paper, based on the traditional homotopy analysis method, we have successfully 
proposed a new analytical method, namely the piecewise perturbation method (PPM), for solving 
nonlinear problems. Here we introduce the idea of Newton iteration into the traditional homotopy 
analysis method to revise the initial guesses, which significantly increases the accuracy and the 
convergence rate of the series solutions. Further, we apply this method to obtain the one-loop 
soliton solution of the Vakhnenko equation in order to verify its potential and validity in solving 
nonlinear problems. With the aid of the optimal value of the convergence-control parameter 
determined by the averaged residual error technique, comparisons are made between the proposed 
method and the traditional homotopy analysis method. The results reveal that these new 
approximations with error estimates possess better accuracy and higher convergence rate than those 
obtained by the traditional homotopy analysis method. 

1 Introduction 
There are few phenomena in various fields of science occurring linearly, most of problems and 

scientific phenomenon are nonlinear. However, nonlinear problems are much difficult to solve than 
linear ones, especially by means of analytic methods. In recent decades, some analytical methods 
were good means of analyzing the nonlinear problems [1-4], and as we know, the homotopy 
analysis method (HAM) is a famous one for constructing the analytical approximate solutions via 
power series with the convergence-parameter. This method is superior to the traditional perturbation 
methods and non-perturbation methods in that it provides us with a convenient way to adjust and 
control the convergence region and rate of the series solutions. What is more, the HAM has been 
wider successfully used in science and engineering, see e.g. [5,9,14-18]. 

Based on the freedom of the initial guess in HAM, our primary aim of this work is to increase 
the accuracy and convergence rate of the series solutions by revising the initial guesses. In this way, 
we employ the idea of Newton iteration technique into the traditional homotopy analysis method as 
follows: first, for a given initial guess of one considered equation, the traditional HAM is used to 
obtain a fixed finite-order HAM approximation; second, using the idea of Newton iteration, this 
finite-order HAM approximation is regarded as the new initial guess of the considered equation, 
and then one can use this new initial guess to obtain the other finite-order HAM approximation, 
which is the final approximation for this considered equation. In addition, one can determine the 
optimal value of the convergence-control parameter by the averaged residual error technique 
suggested by Liao [17]. Throughout this paper we call this proposed method the piecewise 
perturbation method (PPM), whose essence is the HAM with revised initial guess.  

Solitary waves or soliton solutions play an important role in nonlinear field, and to obtain soliton 
solutions is important in different areas of physics and technology. In recent years, analytical soliton 
solutions of some nonlinear differential equations have been gotten in various previous articles 
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[10-14,16]. In this paper, we will employ the new proposed method to study the Vakhnenko 
equation [5-8] 
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where u is the dimensionless pressure, x is the spatial variable and t is the time. We should note that 
the above Vakhnenko equation is a nonlinear equation with loop soliton solutions governing the 
propagation of high-frequency waves in a relaxing medium.  

The paper is arranged as follows. In section 2, we transform the Vakhnenko equation (1) into an 
ordinary differential equation with boundary conditions. In section 3, a brief review of the 
traditional HAM and a detail introduction to the proposed method are shown for an abstract 
nonlinear ordinary differential equation with initial or boundary conditions. In section 4, we apply 
the new proposed method to analysizing the Vakhnenko equation (1) through the ordinary 
differential equation obtained in section 2. In section 5, comparisons of the traditional HAM and the 
proposed method are made to show the validity and superiority of the new method. Discussions and 
conclusions are provided in section 6. 

2 Normalization of the Vakhnenko Equation  
Using the transformation 
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Eq. (1) is transformed into 
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It follows from Eq. (4) that  
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and then Eq. (3) becomes  
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By applying the traveling wave transformation 
        TXWTXW −== θθ ),(),(                                          (7)

 into Eq. (6), we obtain the following ordinary differential equation   
        [ ] 0)(')(')(''' 2 =−+ θθθ WWW ,                                        (8)

 where the prime means the derivative with respect to θ. According to the symmetry of U(X,T) in 
X-T space and with the aid of Eq. (5), it is clear that W'(θ)=W'(-θ). Then integrating to both sides of 
this formula gives W(θ)+W(-θ)=A, where A is a constant. It is obvious from Eq. (4) that W(-∞) is 
equal to zero. From the above discussions, we therefore easily get the following boundary 
conditions 
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Finally, under the transformation 
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the Eqs. (8) and (9) yield 
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with the boundary conditions   
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where γ=A/2 is a constant to be determined. The exact value of the parameter γ in Eq. (11) is equal 
to 3 as pointed in [5], which can be also derived from [7] . In the following work, we will analyze 
the Vakhnenko equation (1) through the ordinary differential equation (11) and its corresponding 
boundary conditions (12).  

3 Introduction to the Piecewise Perturbation Method 
In this section, to show the new proposed method clearly, we first start with the review of the 

traditional homotopy analysis method in the subsection 3.1. And then, the basic idea of the new 
method is given in the subsection 3.2.  
3.1 Review of the traditional homotopy analysis method 

Consider the abstract nonlinear ordinary differential equation  
 0))(( =θgΝ ,                                                    (13) 

with some given initial or boundary conditions, where N is a nonlinear operator, g(θ) is an unknown 
function. As Liao pointed in [9], one first construct the zeroth-order deformation equation 

 [ ] [ ],);()()();()1( 0 qΝqhHgqLq θφθθθφ =−−                            (14) 
where q∈[0,1] is an embedding parameter, h≠ 0 is the convergence-control parameter, )(0 θg is the 
initial guess, H(θ) is an auxiliary function and L is an auxiliary linear operator. It is apparent that 
when q=0 and q=1, Eq. (14) becomes ϕ(θ;0)= )(0 θg and ϕ(θ;1)=g(θ) respectively. 

Expanding ϕ(θ;q) in Taylor series with respect to the embedding parameter q, we get 
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  Supposing that the auxiliary linear operator L, the initial guess )(0 θg , the auxiliary function H(θ) 
and the convergence-control parameter h are properly chosen such that the series (15) converges at 
q = 1, we then obtain the series solution 
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This series solution (17) must be the solution of Eq. (13) by Liao’s convergence theorem; see the 
Chapter 3.3 in [9] for reference. 

Differentiating the zeroth-order deformation (14) k times with respect to the parameter q, and 
then setting q = 0, we have the so called kth-order deformation equation 

 [ ] [ ] 1)),(()()()( 11 ≥+= −− kgRhHgLgL kkkkk θθθχθ                       (18) 
and its corresponding initial or boundary condition 
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where the vectors and function kχ satisfying  
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The kth-order deformation equation (18) is linear and therefore )(θkg can be easily solved by 

284



 

means of symbolic computation software such as MAPLE or MATHEMATICA. Thus, we finally 
obtain the traditional homotopy analysis solution 
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In real applications, we usually use the finite order approximation of Eq. (23), that is, the 
rth-order HAM approximation  
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Here, we point out that the optimal value of the convergence-control parameter h in Eq. (24) 
could be determined using the so-called averaged residual error technique suggested by Liao [17]. 
The averaged residual error of the rth-order HAM approximation )(][ θrg on the interval [0,d] is 
defined by 
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where d=2 and K=20 are considered for this problem throughout this work, and the optimal value 
of h is then determined by solving the equation 
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Due to Eqs. (25) and (26), the optimal rth-order HAM approximation )(][ θrg could be given by 
substituting the optimal value of h into Eq. (24). We note that, in the next subsection, the work are 
related to this optimal rth-order HAM approximation.  
3.2 Basic idea of the piecewise perturbation method 

In this subsection, the main idea is to use the optimal rth-order HAM approximations )(][ θrg in 
Eq. (24) to revise the initial guesses.     

As mentioned above, we next use the optimal rth-order HAM approximations )(][ θrg in Eq. (24)  
as a new initial guess of Eq. (13). To guarantee the consistency of symbols, we denote the new 
initial guess by )(][

0 θrg , that is, 
)()( ][][

0 θθ rr goptimalg =                                          (27) 
Correspondingly, we have the zeroth-order deformation equation  
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the Taylor series 
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the kth-order deformation equation 
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with the initial or boundary condition 
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After solving the kth-order deformation equation (31), a new series solution with the initial 
guess )(][

0 θrg of Eq. (13) can be obtained, and has the form  
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We call this new proposed method the piecewise perturbation method, and correspondingly, the 
finite order approximation 
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is called the [m,r]th-order PPM approximation. And via the averaged residual error defined in Eqs. 
(25) and (26), it is also easy to obtain the optimal [m,r]th-order PPM approximation of Eq. (36) by 
using )(],[ θrmg instead of )(][ θrg in Eq. (25).  

4 Application to the Vakhnenko Equation 
In this part, the new proposed method is used to obtain the one-loop soliton solution to the 

Vakhnenko equation. As examples, we only consider the case of r=1 and r=2, that is, the 
[m,1]th-order PPM approximation and the [m,2]th-order PPM approximation. We first notice that 
the traditional HAM has been used for solving this Vakhnenko equation by Wu et al. in [5], from 
which we can obtain the traditional HAM solution  
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It should be pointed out that the above results will be directly used in the following computation.  
Let us construct the zero-order deformation equation 
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where the new initial guess )(][
0 θrg is the optimal )(][ θrg determined by Eqs. (37-40), the auxiliary 

function H(θ), the linear operator L and the nonlinear operator N are chosen by  
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At this moment, the Taylor series of ϕ(θ;q) and Г(q) with respect to the embedding parameter q 

yield 
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On the other hand, we differentiate the zeroth-order deformation (41) k times with respect to the 
parameter q, and set q = 0, then the kth-order deformation equation becomes 
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We demonstrate that Eq. (47) is a linear equation with a general solution in the form 
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where C1, C2 and C3 are the integral constants. It follows from the boundary condition (48) at 
infinity that C2 and C3 must be zero. Then the values of γk-1 and C1 can be determined by the other 
two boundary conditions in Eq. (48). 

By using the Maple to solve Eq. (47) one by one, the specific expressions of )(][ θr
kg are 

determined. Further, assuming that h are so properly chosen that the two power series (45) are 
convergent at q = 1, we have from (45) that  
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which must be the solution of Eq. (13) [9].  
4.1 [m, 1]-order PPM approximation 
  In this subsection, we show the specific representation of the [m, 1]-order PPM approximation.  
Note that approximations throughout this work hold 20 digits, and the calculations are completed by 
means of the symbolic computation software ``Maple’’. 

In the case of r=1, the 1th-order HAM approximation )(]1[ θg of Eq. (13) can be easily given by 
Eqs. (37-39), and via the averaged residual error formula defined by Eqs. (25) and (26), the optimal 
value of h in )(]1[ θg is -1.3312818519920553441, so the revised initial guess )(]1[

0 θg is determined by 
the optimal )(]1[ θg and has the form 
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At last, solving the kth-order deformation equation (47) gives the detail formula of the [m, 1]-order 
PPM approximation  
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4.2 [m, 2]-order PPM approximation 
  As to the case of r=2, we do the same steps as above to determine the revised initial 
guess )(]2[

0 θg . As a result, the optimal value of h in )(]2[ θg is equal to -1.3810974496835384214, 
which leads to  

287



 

.8e4319836456.0022161900e1728109576.359416593-
e2963301093.214200530+0e2756347683.657047273-

3e13935322711.2767678035e0341678297-1.8001413)(

6-5-

4-3-

-2-]2[
0

θθ

θθ

θθθ

+

+=g
      (55) 

In the same way, the [m, 2]-order PPM approximation  
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can be determined by solving the kth-order deformation equation (47) .  

5 Results and Analysis  
Throughout this section, we also analyze the PPM approximations by taking r=1 and r=2 as 

examples. We first demonstrate that the exact one-loop soliton solution of the Vakhnenko equation 
is 
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where ζ plays the role of the parameter. From Eqs. (2), (4), (5), (7) and (10), we have 
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At the same time, the symmetry in x-t space implies 
  ,)0(20 γγγ −=−−= gx                                              (59) 

which transform Eq. (58) into 
 .)(),('),( θθγγθγ −+=−= gtxgtxu                                 (60) 

Comparing Eqs. (57) and (60), we get the wave speed v=1 and  
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The following comparisons are relative to this function. We compare the PPM approximation with 
the traditional HAM approximation by solving the same number of the higher-order deformation 
equations. Obviously, to get the rth-order HAM approximation )(][ θrg and the [m,r]th-order PPM 
approximation )(],[ θrmg , the number of the higher-order deformation equations need to be solved 
are r and m+r, respectively. We also note that the following errors are defined by the absolute error, 
which have the form 

 ., EXACTHAMHAMEXACTPPMPPM ggEggE −=−=                         (62) 
5.1 Analysis of the [m, 1]-order PPM approximation 
  According to the measure of solving the same number of the higher-order deformation equations, 
let us use the optimal 4th-order HAM approximation )(]4[ θg and the optimal [3,1]th-order PPM 
approximation )(]1,3[ θg as an example.  
  Fig. 1 shows the comparison of )(]4[ θg and )(]1,3[ θg on the interval [0,3]. They are all agree with 
the exact solution in Eq. (61) well, this shows these two method are effectiveness in solving this 
problem. We also found that the curve of the PPM approximation is always below that of the HAM 
approximation, which means the accuracy and the convergence rate of the PPM approximation are 
higher than those of the HAM approximation with the aid of the curve of the exact solution. More 
clear results by estimating the absolute errors of them can be seen in Fig. 2, and it should be 
demonstrate that the biggest error is below 0.004, which is almost the half of the error of the HAM 
approximation. Fig. 3 gives the plot of the approximation of u(x,t) in Eq. (60) determined by the 
optimal [3,1]th-order PPM approximation )(]1,3[ θg , and it is agree well with the exact one-loop 
soliton solution of Vakhnenko equation in Eq. (57). 
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Figure 1. Comparison of the optimal 4th-order HAM approximation )(]4[ θg and the optimal [3,1]th-order 

PPM approximation )(]1,3[ θg . Dashed line: 4th-order HAM approximation; solid circle: [3,1]th-order PPM 
approximation; solid line: exact solution. 

 
Figure 2. Absolute errors of the optimal 4th-order HAM approximation )(]4[ θg (shown by solid line) and the 

optimal [3,1]th-order PPM approximation )(]1,3[ θg (shown by dashed line). 

 
Figure 3. Symbol: The approximation of u(x,t) in Eq. (60) determined by the optimal [3,1]th-order PPM 

approximation )(]1,3[ θg ; solid line: exact solution. 
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5.2 Analysis of the [m, 2]-order PPM approximation 
  In this sebsection, we consider the optimal 4th-order HAM approximation )(]4[ θg and the optimal 
[2,2]th-order PPM approximation )(]2,2[ θg to analysis the main results.  
  The comparison of )(]4[ θg and )(]2,2[ θg are given in Fig. 4, and the first finding is that this PPM 
approximation is also agree with the exact solution in Eq. (61) well. Comparing the two curves in 
this figure also shows the accuracy and the convergence rate of the PPM approximation are higher 
than these of the HAM approximation. By considering the absolute errors of them, Fig. 5 shows that 
the biggest error of this PPM approximation is below 0.003, which is smaller than the half of the 
error of the HAM approximation. The plot of the approximation of u(x,t) determined by the optimal 
[2,2]th-order PPM approximation )(]2,2[ θg are shown in Fig. 6. This approximation is also agree 
well with the exact one-loop soliton solution of Vakhnenko equation in Eq. (60). 
  In addition, the comparison of the optimal [3,1]th-order PPM approximation )(]1,3[ θg and the 
optimal [2,2]th-order PPM approximation )(]2,2[ θg are also considered in Fig. 7. It can be seen that 
the accuracy and the convergence rate of the latter are better than those of the former.  

 
Figure 4. Comparison of the optimal 4th-order HAM approximation )(]4[ θg and the optimal [2,2]th-order 
PPM approximation )(]2,2[ θg . Dashed line: 4th-order HAM approximation; solid box: [2,2]th-order PPM 

approximation; solid line: exact solution. 

 
Figure 5. Absolute errors of the optimal 4th-order HAM approximation )(]4[ θg (shown by solid line) and the 

optimal [2,2]th-order PPM approximation )(]2,2[ θg (shown by dotted line). 
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Figure 6. Symbol: The approximation of u(x,t) in Eq. (60) determined by the optimal [2,2]th-order PPM 

approximation )(]2,2[ θg ; solid line: exact solution. 

 
Figure 7. Absolute errors of the optimal 4th-order HAM approximation )(]4[ θg (shown by solid 

line) , the optimal [3,1]th-order PPM approximation )(]1,3[ θg (shown by dashed line) and the optimal 
[2,2]th-order PPM approximation )(]2,2[ θg (shown by dotted line). 

6 Conclusion 
In this paper, based on the traditional HAM and the idea of the Newton iteration, a new anlytical 

method called piecewise perturbation method (PPM) is proposed for solving nonlinear problems. As 
the application of the proposed method, new approximations for the one-loop soliton solution to the 
Vakhnenko equation are obtained. The comparisons between the proposed method and the 
traditional HAM show that these new approximations with error estimates (or the optimal PPM 
approximations) possess better accuracy and higher convergence rate than those obtained by the 
traditional HAM.  
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