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Abstract. A Mixed Integer Linear Programming (MILP) model for Non-strict Uncapacitated 
Multi-allocation p-hub Median Problem (NSUMApHUMP) is established. Applied genetic 
algorithm to the hub and spoke locations to minimize the total costs of airline network. Exact 
solutions of the model are obtained by encoding individual structure correctly and improving 
genetic operator according to this MILP model and hub-and-spoke network configuration. The 
instance analysis validates strong feasibility of the model and high efficiency of the proposed 
genetic algorithm for NSUMApHUMP. 

Introduction 

Hub-and-spoke airline network is an advanced kind of reasonably structured, scientifically 
managed and efficiently operated airline network, which can perform well in yielding economies of 
both scale and scope. While the world-class airline companies have been build up their own 
hub-and-spoke airline networks, Uncapacitated Multi-allocation p-hub Median Problem 
(UMApHUMP) is turning into the hot spot in hub-and-spoke airline network design. UMApHUMP 
can be classified into two main types: Non-strict Uncapacitated Multi-allocation p-hub Median 
Problem (NSUMApHUMP) considering direct connection between spokes and Strict Uncapacitated 
Multi-allocation p-hub Median Problem (SUMApHUMP) considering not. 

Existing literatures typically adopt classical linear models have been studied much about 
SUMApHUMP. Campbell, by proposing a 0-1 mixed integer linear programming model, used a 
greedy-exchange heuristic algorithm to find the hub locations in SUMApHUMP [1]. Sohn and Park 
used Floyd-shortest-path algorithm to solve the problem based on enumeration method [2]. Bai 
Mingguo put forward a new heuristic algorithm based on tabu search and shortest path algorithm. 
However, concerning that the NSUMApHUMP is much more grounded in reality than the strict one, 
little has been done [3]. Therefore, this paper focuses on NSUMApHUMP and presents a genetic 
algorithm to solve this problem. The CAB (Civil Aeronautics Board) classical benchmark data set is 
used to test the algorithm [4]. Calculating results validates that the algorithm has high ability and 
efficiency in finding optimal solution. 

Mathematical model 

Problem description. Characteristics of NSUMApHUMP: 
I. Suppose that the number of cities is n , and preset the number of hubs p ; 
II. All hubs are connected to each other directly, while spokes could be connected directly to 

another one or transit though hubs; 
III. For passengers from origin to destination, they can only choose the airline with lowest cost; 
IV. Considering efficiency, turnovers of hubs is no more than two; 
V. A spoke can be connected with more than one hub; 
VI. There is a discount factor   ( 0 1  ) for connection between hubs; 
VII. Airports and airlines in this model are uncapacitated. 
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On the premise of meeting the stipulations and assumptions mentioned above, p  hubs are 
chosen from n  cities and determine the possible ways of connection between nodes, to minimize 
the total costs of airline network. The total costs consist of spoke-to-spoke, spoke-to-hub, 
hub-to-hub and hub-to-spoke cost. 

Modeling building. For convenience, the symbols of NSUMApHUMP can be defined as 
follows: 

{1,2,..., }N n : A set of n  cities; 

ijw : O-D flow from City i  to City j ; 

ijx : Non-stop-flight flow from City i  to City j  as a percentage of ijw ; 

ikljx : Flow from City i , after Hub k  and Hub l  transit, to City j  as a percentage of ijw ; 

ijC : Transport cost per flow unit from City i  to City j ; 

ikljC : Transport cost per flow unit from City i , after Hub k  and Hub l  transit, to City j : 

iklj ik kl ljC C C C   ; 

kH : Binary variable: equals 1 if City k  is a hub and 0 otherwise. 

The mathematical formulation of the MILP model for NSUMApHUMP can be written as follows: 
Object function 
Minimize  
 ij ij ij ij iklj iklj
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{0,1}kH  , k N  .                                                 (6) 

0ijx  , ,i j N  .                                                   (7) 

0ikljx  , , , ,i k l j N  .                                               (8) 

Equation (1) is the objective function which minimizing the total cost of the hub-and-spoke 
airline network: the cost for direct airlines and transshipment ones. Constraint (2) sets the number of 
hubs in network to p . Constraint (3) ensures that the sum of direct-airline flow and 
transshipment-airline flow is 1 for any city pair. Constraints (4) and (5) ensue that no spoke can be 
connected with a node, unless that node is a hub. 

Genetic algorithm design 

Genetic algorithm (GA) is a kind of search algorithm with generating-and-test characteristic, 
which is abstracted from genome evolution to simulate comprehensively the mechanism of nature 
selection and heredity. In a genetic algorithm, a population of candidate solutions (individuals) to an 
optimization problem is evolved toward better solutions. Each candidate solution has a set of 
properties (chromosomes) which can be mutated and altered [5]. 

Once the genetic representation and the fitness function are defined, a GA proceeds to initialize a 
population of solutions and then to improve it through repetitive application of the mutation, 
crossover, inversion and selection operators.  

Encoding. The GA applied to this paper adopts real-number coding to represent a given network. 
The length of each individual is equals to the number of the cities in the network. Inside there are 
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two distinct kinds of bits: the bits from number 1 to number p represent the hub cities in the 
network, while the ones from number 1p  to number n  represent the spoke cities, where the 
value of each bit means the number of a city. Figure 1 shows an example of network encoded. 

 
Fig.1 Individual representation 

Fitness function. The value of the fitness function is inversely proportional to the value of the 
objective function (1) of the given network represented by each individual. So the objective for this 
optimization problem designed in this paper is to find an individual to maximize the value of the 
fitness function. 

Genetic Operations 
Selection. In this case, elitism and 2-tournament selection was chosen. The selection process is 

as follows: c  individuals with better fitness function among N  individuals of each generation 
are selected to remain until next generation, and 2-tournament selection is used to select the rest of 
N c  individuals. 

Crossover. For real-number coding, the key point of crossover is to guarantee every new 
offspring will have a self-contained structure at the end of the crossover process. 

For example, after crossover, a new offspring would have the same two or more cities, which 
violates the constraints of NSUMApHUMP. To solve this problem, every new offspring should 
undergo a rematch after crossover. In this paper, two-point crossover was chosen. The process is as 
follows: 

STEP1:  Two paternal individuals, called 1f  and 2f , are chosen randomly from N  

individuals. 
         ( ,1)n randi N ;  %Populations in random order 

     1 ( ( ),:)f pop n i ; 

     2 ( ( 1),:)f pop n i  ; 

STEP2: Generate randomly two crossing points, 1x  and 2x , from 2 to 1n . 

     1 ( 3) 1m randi n   ; 

     2 ( 3) 1m randi n   ; 

     1 1 2min( , )x m m ; 

     2 1 2min( , )x m m ; 

STEP3: Exchange the information of '
1f  and '

2f , where to the bits on the left side of 1x  and 

the right side of 2x . 
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Fig.2 Crossover 

STEP4: Detect repetitive-bit pair in 1f  and 2f , and undergo a rematch. 

 
Fig.3 Rematch 

Mutation. Continuous reverse mutation method was adopted. The mutation process is as 
follows: 

STEP1: One paternal individual, called 1f , is chosen randomly from the N  individuals after 

crossover operation. 
       ( ,1)n randi N ;  % Populations in random order 

       1 ( ( ),:)f pop n i ; 

STEP2: Generate randomly one mutation points 1x  from 2 to 1n . 

       1 ( 3) 1x randi n   ; 

STEP3: Invert the information of 1f  before 1x . 

 
Fig.4 Mutation 

Instance Analysis 

The CAB data set includes traffic matrix and cost data of 25 cities in America. It is a classical 
benchmark data set, proposed by O’kelly in 1987, for airline network design. In this computational 
experiment, n , the number of cities is set as 25. Furthermore, the discount factor   considered 
are {0.4,0.6,0.8}   and the number of hubs p  receives different values {2,3,4}p  . 

For the genetic algorithm in this computational experiment, the following parameters were used: 
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  100C  ;    %Operation times of GA 
  20N  ;     %Number of individual in the initial population 
  500G  ;    %Maximum iterations of each genetic algorithm 
  0.01pc  ;   %Probability of crossover 
  0.1pm  ;   %Probability of mutation 

The results of the GA for NSUMApHUMP, implemented by using MATLAB 2015b, are 
compared with the results obtained by the Mixed Integer Linear Programming (MILP) model for 
NSUMApHUMP using Lingo 9.0. Table 1 shows the results comparison in detail. 
 

Table 1 Comparison of Optimum Solutions Obtained by MILP and GA 

n-p-ρ Hubs   
MILP  GA 

Solutions  CPU(s)  Solutions  Dev(%)  CPU(s) 

25‐2‐0.4  12,20  797.17  273.47  797.17      0    7.42 

25‐2‐0.6  12,20  851.52  268.26  851.52  0  6.00 

25‐2‐0.8  12,20  895.44  217.19  895.44  0  2.17 

25‐3‐0.4  4,12,17  724.82  215.34  724.82  0  2.21 

25‐3‐0.6  4,12,17  809.68  247.49  809.68  0  6.46 

25‐3‐0.8  4,12,17  878.16  303.02  878.16  0  8.79 

25‐4‐0.4  4,12,17,24  664.02  104.75  664.02      0      1.14 

25‐4‐0.6  1,4,12,17  773.45  121.67  773.45  0  1.56 

25‐4‐0.8  1,4,12,17  862.86  274.18  862.86  0  8.05 

 
Both kinds of methods achieved the globally optimal solutions on two different software 

platforms. And the instance analysis shows that the efficiency of proposed GA for NSUMApHUMP 
is much higher than the MILP model. 

When the number of hubs p  are {2,3}p  , the hubs allocated are the same in different values 
of the discount factor. When 4p   and 0.4  , the hubs allocated are different from the other 
two values of the discount factor. It indicates that the discount factor has an effect on hubs 
allocation. 

Conclusions 

In this paper, a genetic algorithm was proposed to solve the Non-strict Uncapacitated 
Multi-allocation p-hub Median Problem. The CAB classical benchmark data set was used to test 
this GA for NSUMApHUMP, and compared the solutions with the ones obtained by MILP. The 
instance analysis demonstrates that the proposed algorithm can fast and effectively solve the 
problem, and computation time showed linear increase with problem scale, which means that the 
proposed GA could be applied to solve the p-hub airline network in large scale. 
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