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Abstract. In this paper, the optimal boundary control problem in finite time horizon for linear 
parabolic partial differential equations cascaded through Robin boundary condition is addressed. 
Firstly, the well-posedness of the solution for the cascaded system is presented. Secondly, with the 
existence of the optimal control, the adjoint equation and the first-order sufficient and necessary 
condition are derived. Also, the well-posedness of the adjoint equation is guaranteed. Thirdly, to 
implement the optimal control, the optimal system consisting of a forward-in-time state equation and 
a backward-in-time adjoint equation coupled with the optimal boundary control is derived. Finally, a 
numerical example is presented to illustrate this method. 

Introduction 

Optimal control with partial differential equation (PDE) constrained has been more and more 
attracted in recent several decades, since its widely application in engineering. An earlier detailed 
study of the optimal control governed by PDEs can be discovered in [1]. Recently, with the effort in 
computation, the optimal control problem with PDEs becomes easier in implementation than before. 
Thus, a relatively amount of research results have been presented, for instance, the optimal control for 
parabolic PDEs and elliptic PDEs [2] or the infinite dimensional system optimal control [3], the 
optimal control for wave equation [4], etc. More recently, some special equation have been studied 
for the optimal control theory, such as the Cahn-Hilliard equation [5] [6], the viscous 
Dullin-Gottwalld-Holm [7], the viscous Degasperis-Procesi equation [8], etc. Although much 
attention has been paid on these optimal control problems, the optimal control for the cascaded PDEs 
remains to be studied.  

Cascaded PDEs are commonly used in many practical problems, such as electromagnetic coupling, 
mechanical coupling, and coupled chemical reactions. It is meaningful to consider the optimal control 
for cascaded PDEs. Therefore, we first consider the optimal boundary control for the linear parabolic 
PDEs cascaded through the boundary. As well known, the optimal control for parabolic PDEs needs 
the specific well-posedness of the solutions since the existence of time variable. The well-posedness 
of the parabolic system was well studied in [2]. Due to the existence of the cascaded term, the 
well-posedness of cascaded system will become more complicated. In this paper, we first consider the 
well-posedness of the solution, which makes sense of the optimal control. Then, based on the 
optimization theory, the first-order sufficient and necessary optimality condition is obtained by using 
the Fréchet derivative and the continuity of the solution operators. Finally, a projected optimal 
control with the adjoint state is derived. Furthermore, we introduce the projected gradient method to 
get the control numerically. A numerical example is given to illustrate this method. 

PDE-constrained control problem 
We consider the following optimal control with linear quadratic functional: 
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(1.2) 
with the control constraints: 

( ) ( ) ( ) ( ) ( )2
3 3:   : , , , ,  . . ,ad a bU u L u x t u x t u x t a e x t∈ Σ ≤ ≤ ∈Σ ,                                                                       (1.3) 

where 1Ω , 2
NRΩ ∈  are bounded Lipschitz domains with Lipschitz boundaries 1 2 1Γ ∪Γ = ∂Ω ,  

3 4 2Γ ∪Γ = ∂Ω , 1 2 1∂Ω ∩∂Ω = Γ , 0T >  is a finite time constant  and 1c , 2c , 1α , 2α , 1b  , 2b , 1b , 2b , 

10y , 20y  are functions which will be classified in the following Assumption 1. In this paper, we will 
design the controller signal ( ),u x t  in Eq.1.3 to minimize the performance Eq.1.1 with respect to the 

reference signals  ( ) ( )
1

2
1,dy x t L Q∈  and ( ) ( )

2

2
2,dy x t L Q∈ .  

Well-posedness of the solution.  To consider the existence and regularity of the solution, we have 
the following assumption. 

Assumption 1. Let 1Ω , 2
NRΩ ⊂  be bounded Lipschitz domains with Lipschitz boundaries 

1 2 1Γ ∪Γ = ∂Ω ,  3 4 2Γ ∪Γ = ∂Ω , 1 2 1∂Ω ∩∂Ω = Γ  and let 0T >  denote a fixed final time. Moreover, 
assume that functions ( )1 1c L Q∞∈ , ( )2 2c L Q∞∈ , ( )1 1 2Lα ∞∈ Σ ∪Σ , ( )1 1Lb ∞∈ Σ , ( )2

1 2b L∈ Σ , 

( )2 3 4Lα ∞∈ Σ ∪Σ , ( )2 3Lb ∞∈ Σ , ( )2
2 4b L∈ Σ , ( )2

10 1y L∈ Ω , ( )2
20 2y L∈ Ω , where ( )1 , 0x tα ≥  for 

almost every ( ) 1 2,x t ∈Σ ∪Σ  and ( )2 , 0x tα ≥   for almost every ( ) 3 4,x t ∈Σ ∪Σ  are prescribed. 

The space ( )1,0
2W Q  denotes the normed space of all functions ( )2y L Q∈  having weak first-order 

partial derivatives with respect to ( )1 2, , , Nx x x  in ( )2L Q ,  endowed with the norm: 

( ) ( ) ( )( )( )1,0
2

1 22 2

0
, ,

T

W Q
y y x t y x t dxdt

Ω
= + ∇∫ ∫ . 

From the Theorem 7.8 in [2] or [9], assume that assumption 1 holds. Then, the initial-boundary 
value problem Eq.1.2 has a unique solution ( )1,0

1 2 1y W Q∈  , ( )1,0
2 2 2y W Q∈ . Furthermore, since the 

definition of weak solutions (variational equalities holding for ( )1,1
1 2 1v W Q∈ , ( )1,1

2 2 1v W Q∈  such that 

( )1 , 0v T⋅ =  and ( )2 , 0v T⋅ = ), the solutions ( )1,0
1 2 1y W Q∈  and ( )1,0

2 2 2y W Q∈  are difficult to 
consider the optimal control. Then, based on this solution space, we derive another solution space 

( )0,W T : ( ) ( )( ) ( )( ){ }2 1 1
1 1 1 1 10, 0, ; : 0, ;tW T y L T H y T H ∗= ∈ Ω ∈ Ω  and  

( ) ( )( ) ( )( ){ }2 1 1
2 2 2 2 20, 0, ; : 0, ;tW T y L T H y T H ∗= ∈ Ω ∈ Ω  with ( )1

iH ∗Ω  being the dual space of 

( )1
iH Ω . Then, we have the following theorem. 

Theorem 1. Assume that Assumption 1 holds, the boundary control u  belongs to ( )2
3L Σ . Then, 

the initial-boundary value problem Eq.1.2 has a unique solution ( )1 1 0,y W T∈  , ( )2 2 0,y W T∈ . 

Besides, there exists some constants 0c >  that does not depend on ( )1 2 10 20, , , ,b b u y y  such that 
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Proof.  To proof the theorem 1, one way is to follow the proof in [1]. Another way is based on the 
solution space ( )1,0

2 1W Q , ( )1,0
2 2W Q . Firstly, consider the 2y  system.  Since the assumption in 

theorem 1, we have ( )1,0
1 2 1y W Q=  and ( )1,0

2 2 2y W Q∈ . Then, from the theorem 3.12 in [2], we have 

the ( )2 2 0,y W T∈ . With the cascaded term 
1

2y
Σ

 belongs to ( )2
1L Σ . Based on the proof of theorem 

3.12 in [2], we have conclude that ( )1 1 0,y W T∈ . Similarly, the estimate of the form Eq.2 can be 
obtained directly from Theorem 3.13 in [2].                                                                                                                                           

Since ( )1 1 0,y W T∈  and ( )2 2 0,y W T∈ , from the theorem 3.10 in [2], with the continuous 

embedding: ( ) [ ] ( )( )1
1 10, 0, ,W T C T H→ Ω  and ( ) [ ] ( )( )1

2 20, 0, ,W T C T H→ Ω , we conclude that 

[ ] ( )( )1
1 10, ,y C T H∈ Ω  and [ ] ( )( )1

2 20, ,y C T H∈ Ω . Then, the initial and final values ( )1 0y , ( )1y T , 

( )2 0y  and ( )2y T  are meaningful in spaces ( )1
iH Ω , 1, 2i = . Then, the adjoint equation of the state 

equation Eq.1.2 is meaningful. In the following, we will consider the optimal boundary control for the 
cascaded system Eq.1.2 with performance index Eq. 1.1. 

First-order necessary optimality condition 

From theorem 1, the solution in ( )1 1 0,y W T∈  and ( )2 2 0,y W T∈  can be represented of the form 

3 42 2 2 20 20 2 2y G u G b G y S u bb ∗
Σ Σ= + + = + , 

1 1 1 1 21 1 2 1 2 1 10 10 1 1 = y G S u G b G b G y S u bb τ b τ ∗ ∗
Σ Σ Σ Σ Σ+ + + = + , 

with continuous linear solution operators ( ) ( )
3

2
3 2 2 20: 0,   for  0,  0G L W T b yΣ Σ → = = ,  

( ) ( )
4

2
4 2 2 20: 0,   for  0,  0G L W T u ybΣ Σ → = = , ( ) ( )2

20 2 2 2 2: 0,   for  0,  0G L W T b ubΩ → = = , 

( ) ( )
1

2
1 1 1 10: 0,    for  0,  0G L W T b yΣ Σ → = = ,  ( ) ( )

2

2
2 1 1 2 10: 0,    for  0,  0G L W T y ybΣ Σ → = =  and 

( ) ( )2
10 1 1 1 1 2: 0,    for  0,  0G L W T b ybΩ → = = , where 

1
τΣ  be the trace operator of 2y  on the 

boundary 1Σ  , 1b∗  and 2b∗  are fixed through the given 1b , 2b , 10y  and 20y . 
Due to theorem 1, we have known that the solution ( )1 1 0,y W T∈  and ( )2 2 0,y W T∈ . Since the 

trace theorem in [10],  ( )( ) ( )2 1 2
1 1 10, ;y L T H L Q∈ Ω ⊂  and ( )( ) ( )2 1 2

2 2 20, ;y L T H L Q∈ Ω ⊂ . 

Therefore, the optimal boundary control for index ( )1 2, ,J y y u  is meaningful. Furthermore, due to 

the admissible control set adU  is a nonempty, closed, bounded, convex subset ( )2
3adU L⊂ Σ , where 

( )2
3L Σ  is a reflexive space. Simultaneously, with the linear continuous solution operators of Eq.1.2, 

the coefficient is chosen as 0uλ > . Then, from theorem 3.15 in [2], the linear quadratic optimal 
control problem Eq.1.1-Eq.1.3 admits the unique optimal boundary control. What’s more, since the 
linear form of system Eq.1.2 and the convexity of J , it is easily seen that the first-order necessary 
condition is also the sufficient optimality condition. 

Furthermore, we reduce the optimal control problem as ( ) ( )1 1 2 2
ˆ , ,J u J S u b S u b u∗ ∗= + + . Then, by 

the Fréchet differentiability of ( )Ĵ u ,  we have the variational inequality 

( )( ) ( ) ( ) ( ) ( )
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1 2

3
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ˆ

                    0

d dQ Q

u

J u u u y y S u u dxdt y y S u u dxdt

u u u dsdt

λ λ

λ
Σ

′ − = − − + − −

+ − ≥

∫∫ ∫∫
∫∫

                                (3) 

In Eq.3, 1y , 2y  and u  denote the optimal state and control, respectively. Let ( )1 1y S u u= −  and 

( )2 2y S u u= − . Since the solution operator, we have ( )
1 11 1 1 2y S u u G yb τΣ Σ= − = . To deal with Eq.3 
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further, we introduce a lemma about the adjoint equation as follows. 
Lemma 1 (adjoint equation) For the optimal control problem Eq.1.1-Eq.1.3, from the induced 

variational inequality Eq.3, consider subsystems ( )1 1y S u u= −  and ( )2 2y S u u= − , the adjoint 
equation for system Eq.1.2 is given as 

( )

( )
( )

2 2 2 2 2 2 2 2
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1 1 12 2 2 2 1

2 2
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and ( )1 1 0,p W T∈ , ( )2 2 0,p W T∈ . 
Proof.  Combing with theorem 3.18 in [2], one has 

( ) ( ) ( )
1

1 1
1 1 1 1 1 1 2=dQ

y y S u u dxdt p S u u dsdtλ λ b
Σ

− − −∫∫ ∫∫                                                                      (5) 

with the adjoint  1p  subsystem as Eq.4. Since Eq.5, Eq.3 can be written as 

( ) ( ) ( ) ( )

( ) ( ) ( )
1 2

1 2

2
1 2

1 1 1 2 2 2

1 1 1 2 2 2 2                                               = .

d dQ Q

dQ

y y S u u dxdt y y S u u dxdt

p S u u dsdt y y S u u dxdt

λ λ

λ b λ
Σ

− − + − −

− + − −

∫∫ ∫∫
∫∫ ∫∫

          (6) 

Then, consider the subsystem ( )2 2y S u u= − ,  by using theorem 3.18 in [2], it is easily seen that 

( ) ( ) ( ) ( )
2

1 2 3
1 1 1 2 2 2 2 2 2= ,dQ

p S u u dsdt y y S u u dxdt p u u dsdtλ b λ b
Σ Σ

− + − − −∫∫ ∫∫ ∫∫                           (7) 

with the adjoint state 2p  satisfying Eq.4. Above all, we have obtained the adjoint equation Eq.4, 
where the well-posedness can be considered with the time transform as: t Tτ = − . Then system Eq.4 
can be transformed the general forward in time parabolic equation as Eq.1.2. From theorem 1, we 
have ( )1 1 0,p W T∈ , ( )2 2 0,p W T∈ .                                                                                                               

Theorem 2. (Sufficient and necessary optimality condition) With the assumption 1 holding, the 
sufficient and necessary optimality condition of optimal boundary control problem is 

( )( )
3

2 2 + 0,     .u adp u u u dsdt u Ub λ
Σ

− ≥ ∀ ∈∫∫  Furthermore, the optimal control can be represented as 

( ) ( ) ( ) 3
2 2, , ,

1,
a bu x t u x t

u

u x t pb
λ  Σ 

 
= Ρ − 

 
with ( ) ( ), , ,a bu x t u x t  

Ρ  being the projection of R  onto 

( ) ( ),   ,a bu x t u x t    pointwise on 3Σ : ( ) ( ) ( ) ( ) ( ){ }{ }, , , : min , ,max , ,
a b b au x t u x t u x t u x t  

Ρ ⋅ = ⋅ . 

Proof. The variational inequality Eq.3 can be formulated as the weak minimum principle 
pointwise. That is ( )( ) ( ) ( )

3
2 2 + 0,    , , ,u a bp u u u u u x t u x tb λ

Σ
− ≥ ∀ ∈   , which is equivalent to the 

minimum principle 
( ) ( )3 3

2 2
2 2 2 2, , ,

+ min +
2 2a b

u u

u u x t u x t
p u u p u uλ λb b

Σ Σ∈  

 =  
 

. Obviously, we obtain the 

optimal control with 0uλ > . 

Numerical example 

To illustrate the optimal control as the adjoint equation Eq.4 and optimal control, we consider the 
system Eq.1.2 over the domain [ ] ( )1 2= = 0,1 0,TΩ Ω × , with coefficients 1 0c = , 2 0.4c = , 1 0.13α = , 

2 0.4α = , 1 1.0b = , 2 1.0b = , ( )1 0.3b t = , ( )2 0.2b t = . Besides, the initial state are given as 

( )10 0.2siny x x= , ( ) 2
20 1y x x= − . Fixed time constant 5.0T =  and reference trajectories are given 

as ( ) ( )1 1, 0.7  ,dy x t x t= ∀ ∈Ω，  and ( ) ( )2 2, 0,  ,dy x t x t= ∀ ∈Ω . The regulation coefficients are 
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chosen as 1 4.0λ = , 2 0.001λ = , 0.0005uλ = . Finally, the control constraint is given as 0.6au = −  
and 0.0bu = . Then, the adjoint equation Eq.1.2 and theorem 2, the optimal control is 

( ) [ ] ( )2, 
1, 1,

a bu u
u

u x t p t
λ

 
= Ρ − 

 
 . To obtain the optimal control and state, we use the projected 

gradient methods, whose convergence analysis can refer to [11].  
Initialize: Choose any initial control ( )0a bu u t u≤ ≤ . Step1: Solve the state system Eq.1.2 with 

control ( )nu t , we obtain the state 1ny , 2ny . Step2: Based on the 1ny , 2ny , we solve the adjoint 
equation Eq.4, we get the adjoint state 1np , 2np . Then, following the variational inequality in 

theorem 2, we obtain the negative gradient: ( ) ( ) ( )( )2
ˆ 1,n n n u nv t J u p t uλ′= − = − + . Step3: Determine 

the optimal step size ns : [ ] { }( ) [ ] { }( ), ,0
ˆ ˆmin

a b a bn n n n nu u u us
J u s v J u sv

>
Ρ + = Ρ + . Step4: Let 

[ ] { }1 ,a bn n n nu uu u s v+ = Ρ + , go to Step 1. 

Following the projected gradient method, we obtain the optimal performance index after 15 
iterations: ( )15

ˆ 0.2042J u = . Fig. 1 (a) shows the curve of the performance index ( )ˆ
nJ u  with respect 

to the iteration n . The variation of the control ( )nu t  with respect to iteration n  is given in Fig. 1 (b). 

                
 (a) The curve of the performance index vs. iteration   (b) The variation of the control vs. iteration  

Fig.1. Numerical results 

Conclusion 
In this paper, the optimal boundary control for linear parabolic cascaded system has been addressed. 
Based on the well-posedness analysis, combined with adjoint equation, the first-order sufficient and 
necessary optimality condition has been derived. Then, a projected control scheme has been obtained. 
Finally, to illustrate the optimality system, a numerical example has been solved by the projected 
gradient method. 

Acknowledgement 
In this paper, the research was supported in part by Ph.D. Programs Foundation of Ministry of 

Education of China under Grant 20130203110021 and in part by NNSF of China No. 61573013.  

References 

[1]Jacques-Louis Lions. Optimal Control of Systems Governed by Partial Differential Equations[M]. 
Springer, Berlin,1971. 

304



 

[2]Fredi Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and 
Applications[M]. American Mathematical Society, Providence, 2010. 

[3] Xungjing Li and Jiongmin Yong. Optimal Control Theory for Infinite Dimensional Systems[M]. 
Birkhäuser, Boston, 1995. 

[4]Martin Gugat, Emmanuel Trélat, and Enrique Zuazua. Optimal Neumann control for the 1d wave 
equation: Finite horizon, infinite horizon, boundary tracking terms and the turnpike property[J]. 
Systems & Control Letters, 2016, 90, 61-70. 

[5]Jiongmin Yong and Songmu Zheng. Feedback stabilization and optimal control for the 
Cahn-Hilliard equation[J]. Nonlinear Analysis, 1991, 17(5):431-444. 

[6]Xiaopeng Zhao and Changchun Liu. Optimal control problem for viscous Cahn-Hilliard 
equation[J]. Nonlinear Analysis: Theory Methods & Applications, 2011, 74(17):6348-6357. 

[7]Chunyu Shen, Lixin Tian, and Anna Gao. Optimal control of the viscous Dullin-Gottwalld-Holm 
equation[J]. Nonlinear Analysis: Real World Applications, 2010, 11(1):480-491. 

[8]Lixin Tian and Chunyu Shen. Optimal control of the viscous Degasperis-Procesi equation[J]. 
Journal of Mathematical Physics, 2007, 48, 113513. 

[9]O. A. Ladyenskaja, V. A. Solonnikov, and N. N. Uralceva. Linear and Quasilinear Equations of 
Parabolic Type[M]. American Mathematical Society, Providence, 1968. 

[10]Robert A. Adams. Sobolev Space[M]. Boston, Academic Press, 1978. 

[11]Michael Hinze, Rene Pinnau, Michael Ulbrich, Stefan Ulbrich. Optimization with PDE 
constraints, Mathematical Modelling: Theory and Applications[M]. Springer, Berlin, 2009. 

305




