
 

The Study of Different Types of Kernel Density Estimators  
MingE Sha1, a, Yonggang Xie2, b 

1Department of Mathematics, Kunming University, Kunming, 650214, CHINA 
2School of Automatic Control and Mechanical Engineering, Kunming University, 650214, CHINA 

aemail: MingE_Sha@126.com, bemail:ygxie@kmu.edu.cn 

Keywords: Kernel Density Estimation (KDE); MATLAB; Probability Density Estimation(PDE); 
Clustering Algorithm Construction 

Abstract. One of the most important method of estimating and graphing the underlying density is 
kernel density estimation (KDE). In this paper, we present basic knowledge of KDE, and simulations 
were carried out which compare three bandwidth selection methods [Normal rule of thumb (NROT), 
Least squares cross-validation (LSCV), and Biased cross-validation (BCV)]. Four types of kernel 
(Standard Normal, Biweight, Laplacian, Rational Quadratic and Circular) are chosen to do the 
simulation. Results shows that overall LSCV performs best. 

I.  Introduction 

Density estimation has gained great popularity in recent 20 decades, due to the fact that it is able to 
apply in many fields, such as archaeology, banking, climatology, economics, genetics, hydrology, 
physiology and so on[1]. In statistics, normally, there are two kinds of probability density estimation 
techniques: semi-parametric and non-parametric techniques. Due to the outstanding performances of 
non-parametric probability density estimation, in this paper, we focus on kernel density estimation 
(KDE), which is a non-parametric way to gain understanding about the distribution of the data. It is 
estimating the probability density function from a random sample. 

Unlike parameter estimation, such as Likelihoods, non-parameter estimation attempt to estimate 
the probability density directly from the data without assuming a particular form for the underlying 
distribution. The first published paper describing non-parameter probability density estimation was 
by Rosenblatt [1956], where he described the general kernel estimator.  

The aim of this paper is to introduce a famous non-parametric estimation, KDE, based on the 
simulation. The rest of the paper is organized as follows: Section II. provides a description of the 
histogram estimator. Then, we describe the kernel density estimator and explain its basic properties in 
section III. In section IV, simulation results are presented, and we conclude this paper in section V. 

II.  The Histogram 

To understand kernel estimators we first need to understand histograms whose disadvantages 
provides the motivation for kernel estimators.  

The histogram[2] is the most common and simplest form of non-parametric density estimation. It 
is a graphical way of summarizing and describing a data set. It divides the sample space into a number 
of bins and approximates the density at the center of each bin by the fraction of points in the training 
data that fall into the corresponding bin. In this way, a histogram visually conveys the distribution of 
the samples. The histogram only requires two “parameters”: the bin width and the starting position of 
the first bin. This is a very simple, easy and effective way to construct probability function; however, 
there are some drawbacks of using this method to do density estimation.  

1. The curve of the probability density function is not smooth, and the discontinuities make it 
impossible to study the structure of the data. 

2.  The probability density function is largely affected by the orientation of the bins. 
3. It is hard to use histogram in high dimensional situations, since the number of bins grows 

exponentially with the number of dimensions. 
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4.  Data within histograms depend on the endpoints, which can cause a loss of information. 
These difficulties make the histogram might be unsuitable for most of practical applications, such 

as generating random numbers from a fitted distribution. However, we can alleviate these problems 
by using kernel density estimators. 

 III.  Kernel Density Estimation 
A. Different Types of KDE 

Non-parametric density estimation is an important tool in the statistical analysis of data. Kernel 
density estimation (KDE) is a non-parametric way to estimate the probability density function of 
a random variable. It is proposed by Rosenblatt (1955) and Emanuel Parzen (1962), and has another 
name Parzen window.In this section, we give brief introduction of KDE [3]. 

The general expression for non-parametric density estimation is: 
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We choose a fixed value of the volume V and determine k from the data. This is the method of 
KDE. We can see from the equation (1) that when N→∞ , KDE converge to the true probability 
density, as long as V decrease with N, and that k increase with N in a proper way.  

Specifically, consider the estimator of the following form[4]: 
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where h , is the bandwidth or smoothing parameter, the function K , which controls the weight given 
to the observation { }ix  at each point 0x , is called the Kernel, it must satisfy the condition that 

( ) ( ) ( ) ,t0 and ,0 ,1 2∫∫∫ ∞<<== dttKdtttKdttK and all odd moments are zero to ensure the 

estimation in equation (2) is a bona fide density estimate. 
 Kernel functions must be continuous, symmetric, and most preferably should have a positive 

(semi-) definite Gram matrix. some popular Kernels are as following: 

• The Gaussian Kernel:             ( ) 2
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• The Epanechnikov Kernel:     ( )
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• The Biweight Kernel:              ( )
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In [5], the Gaussian Kernel is defined in 1-D, 2-D and N-D respectively as the following: 
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where, the σ which is the inner scale, determines the width of the Gaussian Kernel.  

• The Laplacian Kernel:                                ( ) 
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the Laplacian Kernel is completely equivalent to the exponential kernel, except for being less 
sensitive for changes in sigma parameter.     

• The Rational Quadratic Kernel:                  ( )
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where the c  is the intercept constant.  

• The Circular Kernel:        ( )
2
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if  ,σ<− yx  zero otherwise.   
 

Others kernel functions available from the existing literature are[6]:  Linear Kernel, Polynomial 
Kernel, Gaussian Kernel, Exponential Kernel, Hyperbolic Tangent (Sigmoid) Kernel, Rational 
Quadratic Kernel, Multiquadric Kernel, Inverse Multiquadric Kernel, Wave Kernel, Power Kernel, 
Spline Kernel, Bessel Kernel and so on. The choice of a Kernel depends on the problem at hand. For 
example, a Gaussian Kernel allows us to model feature conjunctions up to the order of the normal 
distribution. 

B. Bandwidth Selection Algorithms  

Finding the optimal parameters of the KDE is extremely important in order to obtain a good 
estimate. Although several parameters are involved, the most crucial step is to select a proper 
bandwidth (smoothing parameter)[7], which controls the amount of smoothing. In this paper, we use 
four types of selection methods and give the equations as following: 

• Normal Rule of Thumb (NROT):  ( )
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• Least Squares Cross-Validation (LSCV):     ( ) ( )∑∫
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 IV.  Estimation and Results 
In this section, we discuss different types of Kernels and present the results from simulation 

figures.  
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Fig. 1 The Kernel Estimate with n=15               Fig. 2 The Comparison of four types of Kernel 

In figure (1), we generate a standard normal kernel (indicated by the solid red lines) on each of the 
data points ix . The 15 individual kernels are summed to obtain the kernel density estimate (the solid 
blue curve) for n=15 random variables, a weighted kernel is centered at each data point, and then 
taking the average of them. The data points are the rug plot on the horizontal axis, and the kernel 
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density estimates converge faster to the true underlying density for continuous random variables[8]. 
From Figure (1) we could see, there are two ‘bumps’, which we could conclude that there is a higher 
concentration of smaller densities. 

Figure. 2 is the comparison of four types of Kernel, from the figure we can see, the Biweight 
Kernel has more difference compared with Laplacian, Rational Quadratic and Circular kernel.  
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Fig. 3 The Comparison of different Gauss Kernel             Fig. 4 The Comparison of different Epan  Kernel 
In figure. 3 and 4, we use different there types of bandwidth selection algorithms: LSCV, NROT 

and BCV, in Gaussian kernel and Epanechnikov kernel, respectively, to estimate. The results shows 
that LSCV has better performance at both estimation. 

V.  Conclusion 

KDE uses local averaging to create a smooth curve from a sample of observations, they have great 
utility as a tool for identifying outliers and unexpected patterns in the data not apparent from 
summary statistics. In this paper provides a practical description of KDE, the simulation study also 
conducted using different kernels and different bandwidth selection algorithms. From the simulation 
figures, we could see that LSCV has better performance in our examples.  
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