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Abstract. The task planning of satellite-ground time synchronization (SGTSTP) is a complex 
multi-objective ground station scheduling problem. In this paper, we establish the problem 
formulation and analyze the optimization objectives. Based on the complexity analysis, we design a 
solving framework based on decomposition, which divides the plan horizon into many 
un-interactional plan periods and execute task planning in each period. In algorithm selection, the 
MOGA and NSGA2 are selected. At last, two different scale scenarios are designed and the 
computational result shows that more periods can get better result but spend more time, besides, the 
MOGA has better performance in efficiency and effect than NSGA2, however NSGA2 can get more 
solutions in solving SGTSTP. 

Introduction 

Satellite-ground time synchronization(SGTS) operation, which is executed by building the 
satellite-ground link, is core operation in global navigation satellite system (GNSS).[1] The task 
planning of satellite-ground time synchronization (SGTSTP) is to schedule ground antennas to build 
the communication link with visible satellites for executing the satellite-ground time synchronization 
task (for brevity, “task”). SGTSTP is a ground station scheduling problem, which is a very complex 
problem due to its over-constrained nature. The small-scale ground station scheduling problem can 
be solved manually, but as the scale increasing, the manually solving or brute force search is 
unrealistic and a computational intelligent method must be used.  

At present, the scheduling problem about ground station mainly includes satellite ranging 
scheduling problem (SRSP) [2], multi-satellite tracking telemetry and command (tt&c) scheduling 
problem(MuSTSP) [3] and satellite-ground data transmission scheduling problem (SGDRSP) [4] and 
so on, all above problems are combination optimization problem. In comparison with other ground 
station problems, SGTSTP not only has common features of scheduling problem, but also has own 
characteristic because of special problem background. Firstly, this is a multi-objective optimization 
problem. Secondly, the decision variables number is more than other scheduling problem. 

Most of ground station scheduling problem are single objective optimization problem in current 
research. But the ground station scheduling problem always don’t have only one objective in practice, 
some researchers also carried out a lot of researches on the multi-objective ground station scheduling 
problem. In the references [5-7], xhafa defined four main objectives as follows that would compose 
the fitness function: access window fitness, communication clashes fitness, communication time 
requirement fitness and ground station usage fitness. Besides, the four fitness value calculating 
formulas are given. But, though xhafa took in consideration four objectives, the solving method is 
still to combine four objectives with one objective and use single objective optimization algorithm. 

In this paper, we use multi-objective evolutionary algorithm to solve SGTSTP. The remainder of 
this paper is organized as follows. In the second section we build a general mathematical model. In 
the third section, we establish atomic task mixed integer programming model based decomposition, 
the framework of model and coding form are also designed. In the fourth section, we selected MOGA 
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and NSGA2 to solve this problem. At last, two different scale computational experiences are 
designed to test the model and algorithm. 

Problem Definition and Analysis 

Description of SGTS. To provide higher position accuracy for users, GNSS must remain higher 
time standard and space standard. Maintaining time standard mainly rely on atomic clock on satellite, 
which has inevitable error due to complex space environment and atomic clock autologous error. In 
general, the clock error is main influencing factor of UERE (user equivalent range error) [8]. 
Therefore, to improve position accuracy, it is necessary to use measure data between antennas and 
satellites to predict accurate clock error, which users can receive to get more accurate position. The 
satellite-ground time synchronization operation is a processing of collecting measure data. 

The SGTS operation flow is showed in Fig. 1. There is a benchmark time T0 in ground station and 
a time T1 in satellite, through by communicating between antenna and satellite the ground station gets 
the difference of T0 and T1, which called clock error. The main control station (MCS) collects all the 
clock errors, and makes a clock error prediction, which is broadcasted to users for positioning. 

 

Fig. 1 Operation flow of SGTS 

Problem Formulation. The related parameter and set are defined as follows. 
tbegin: plan begin time 
tend: plan end time 
planHorizon: planHorizon =[tbegin, tend] 
S: set of satellites,  1, , ,S s   , the set element number is ns. 

M: set of antennas,  1, , ,M m    , the set element number is nm. 

( , )s mV : set of time windows,   
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The system is designed so that each satellite s S is visible from at least one station m M within 
the planHorizon , that is, s S , m M such that 

( , )s m
V   . 

t：SGTS task, which refers to the operation that require ground-to-satellite communications, it can 
be defined by tetrad as follows. 

{antenna, satellite, begin time, end time}={ts, tm, tstart, tend} 
T: set of tasks, it also can be defined as follow. 
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besides, ( ) ( 1)end l start l
m mt t   , ( ) ( 1)end o start o

s st t  . 

m : set-up time of antenna，m M  

m : service ability of antenna，m M  

s ：service ability of satellite, s S  

t : the shortest task duration 

The problem constrains are defined as follows. 
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Set-up time constrain: Whenever a ground station m processes two consecutive services with two 
distinct satellites i and j, the ground station requires a setup time m  in order to point its antenna. 

During such a setup time, no further transmissions can occur. The mathematical statement is as 
follow. In this paper, we assume the set-up time is zero. 

ml L , ( 1) ( ) ,start l end l
m m mt t m M     . 

Task duration constrain: The execute time length for every task t must greater than t . The 

mathematical statement is as follow. 
( ) ( ), , 1, , , .end i start i

sm sm t sms S t t i I m M       

Time window constrain: ground station could communicate with a satellite only when the satellite 
lies within the transmitting horizon of the ground station (called time window or visibility window). 
In general, this happens periodically within a planning horizon. That means there are several 
communication chances between a ground station and a satellite. The mathematical statement is as 
follow. 

1, , , ,smi I m M s S    ， 1 smh H   ， ( ) ( ) ( ) ( ),end i end h start i start h
sm sm sm smt tw t tw   

Service ability of antenna constrain: The number of antenna can provide communication service at 
any time. This value is always 1. The setting value is 1 in this paper, that is, =1,m m M    

Service ability of satellite constrain: The number of satellite can build communication service at 
any time. This value is always 1. The setting value is 1 in this paper, that is, =1,s s S    

Optimization Objectives Definition. Firstly, we use symbol mDs as the average task duration of 
satellite s and use mIs as average interval of neighborhood task of satellite s. The calculation formula 
of mDs and mIs  is as follow.  
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In GNSS, all satellites want to maximize mDs and minimize mIs, the aim of task planning is to 
satisfy all satellites’ requirement. However, as the system controller, they must take the system 
balance into consideration except satisfying requirement of each satellite. So we define the pduration  
and pinterval as the system objectives. The calculation formulas of two objectives’ are as follows.  
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Model 

Solve Framework. SGTSTP is a complex oversubscribed scheduling problems (OSP) which has 
several difficulties as follows. 

a) The control variables scale is huge. Not only resources and executing time of each task are 
included, task number and task duration also must be assigned, which is difficult to control. 

b) A whole consideration in planning is necessary because there are some influences and effect 
among tasks. The evaluation of planning result is not an easy summation of each task’s revenue, but is 
a whole evaluation of all tasks’. 

c) This is a typical multi-objective optimization problem, and these objectives are mutually 
exclusive. Therefore, the previous algorithm about ground station scheduling problem is inapplicable 
and new algorithms must be proposed. 

Taking above complexities and difficulties into consideration, we proposed a preprocessing model 
based on decomposition. As show in Fig. 2, the model divides the whole plan horizon into many 
equal plan periods, meanwhile, all time window data are also divided into every plan period (or, for 
brevity, “period”). We regard the indivisible time window in each period as a pre-planning task 
(called “atomic task”), then we execute atomic task planning in each period, therefore, the task 
planning problem changed into a combinatorial optimization problem of atomic tasks, which 
distinctly is a 0-1 programming problem. In addition, each divided time window can’t be divided 
again. 

 

Fig. 2 Sketch of preprocessing model based on decomposition 

After determining the atomic tasks in each period, a splicing operation should be executed to 
combine tasks in neighborhood periods because two neighborhood tasks may be combined into one 
task. We use symbol   to indicate splicing operation, the principle that two tasks can be spliced is 
as follow, t1 and t2 are respectively used to express the two neighborhood atomic tasks. 

     1 2 1 2 1 2end start
s s m mt t t t t t   

 
On the basis of preprocessing model based on decomposition, a task planning framework based on 

decomposition is proposed, as show in Fig. 3. The operation of dealing after planning is to remove 
those tasks that violate constrains to insure tasks enforceability. Need not point out that all genetic 
operations, such as selection, crossover and mutation and so on, are executed independently in each 
period and there is no influence in different periods. 

 

Fig. 3 Solving framework based on decomposition 
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Modeling. We assume that the plan horizon can be divided into N periods, and use i
smnt  express the 

atomic task of period i. 
We define i

smx  mark whether the i
smnt  is selected, then we know 
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i sm
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                                                                                                               (7) 

Then the final planning scheme T can be calculated as follow formula. 
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p
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
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                                                                                                                        (8) 

From the above, we designed a atomic task planning model based decomposition, which is a 0-1 
programming model, the objectives and constrains are as follows. 

Objectives: 

min durationp                                                                                                                                     (9) 

min intervalp                                                                                                                                (10) 

Subject to: 

1i
sm

m M
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       1 ,i N s S                                                                                                      (11) 

1i
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s S

x
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      1 ,i N m M                                                                                                       (12) 

Explain about objective: The objectives are still the two objectives in last section, but for a more 
intuitionistic effect show in diagram, we use parameter  to make an exchange on objective int ervalp  . 
Need to notice that the value 10-7 is a fit value after several computational tests. 

Coding Operation. We choose a 0-1 coding form. We firstly arrange all atomic tasks in each 
period according a fixed sort, the subcode digit number is equal to number of atomic task. When the 
i-th atomic task is selected (xsm

i=1), the subcode digit is 1, or else 0. Then, the part-code in each period 
is a 0-1 code, all part-code combines into one individual code. Coding form is showed in Fig. 4. 

 

Fig. 4 Sketch of code formation 

Algorithms for SGTSTP 

SGTSTP is a typical multi-objective problem and doesn’t have optimal solution like in single 
objective optimization problem, its optimal solution is the Pareto optimal solutions (called Pareto 
front). In recent years, multi-objective evolutionary algorithm (MOEA) is continually used to solve 
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practical problem. In this paper, we select MOEA to solve SGTSTP. In MOEAs, the MOGA 
(multi-objective genetic algorithm) and NSGA2 (non-dominated sorting genetic algorithm II) are two 
famous algorithms and are both successfully applied in some practical application.  

MOGA. MOGA[9] is proposed in 1993, and has a huge practical application market due to its 
usability. The algorithm flow is as follow. 

input 
N (population size) 
T (maximum number of generations) 
P (archives) 

outpu
t 

A (non-dominated set) 

Step 1. Set the generation number g = 0 and randomly initialize the population of N individuals Pg. 
Step 2. for g = 1 to T do 
Step 3. Output the non-dominated solution of Pg into P. 
Step 4. Calculate the rank for each individual in Pg. 
Step 5. Sort population Pg by rank. 

Step 6. 
Use linear interpolation method to interpolate in minimum number (non-dominated solution’ number) and 
maximal number, shared the fitness value among same rank individuals. 

Step 7. Calculate accumulated probability of each individual by roulette. 

Step 8. 
Crossover: select two individuals by roulette to generate two new individuals upon the new individual number 
reach N, if new individual code is illegal, then execute code repair. 

Step 9. Mutation: execute mutation operator. 
Step 10 The new individuals as the Pg+1. 
Step 11 g=g+1 
Step 12 end for 
Step 13 Output the non-dominated solution of P into A. 

NSGA2. NSGA2[10] adopts another algorithm architecture different from MOGA. NSGA2 is a 
popular and frequently-used algorithm, and often deemed as preferred algorithm in solving practical 
problem and comparison object with other MOEAs. 

input 

N (population size) 
T (maximum number of generations) 
P0 (random parent population of size N) 
Q0 (a child population of size N from P0) 

output PT 

Step 1.  Set t=0 

Step 2.  combine parent and children population: Rt=Pt∪Qt. 

Step 3.  Get(F1,F2,…), all non-dominated fronts of Rt. 

Step 4.  Until |Pt+1<N|, till the parent population is filled. 

Step 5.  calculate crowding distance in Fi. 

Step 6.   Pt+1=Pt+1∪Fi, include i-th non-dominated front in the parent pop. 

Step 7.  Sort (Pt+1,≥N),  sort in descending order using ≥n. 

Step 8.   Pt+1=Pt+1[0:N], choose the first N elements of Pt+1. 

Step 9.  use selection, crossover and mutation to create Qt+1. 

Step 10.  t=t+1, go to Step 2. 

Computational Experience 

Test Bed Description. A computational experience was designed based on Compass navigation 
system of China, and the simulation parameters are designed as 
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Table 1. 
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Table 1  Simulation parameters 
Parameters Values remark 
tbegin 2016-01-01 00:00:00 UTC - 
tend 2016-01-08 00:00:00 UTC - 
ηt 30min - 
planPeriod 30min,45min,60min  
Crossover probability 0.7 For MOGA and NSGA2 
Mutation probability 0.3 For MOGA and NSGA2 
Population number 100 For MOGA and NSGA2 
Iterations steps 500 For MOGA and NSGA2 

To verify effectiveness of model and algorithms, we design two different scale instances, in which 
has different number antennas but same number satellites, as Table 2 and Table 3.  

Table 2 Simulation instances 

Instances Antennas Number Antennas Navigation constellation 
Small scale 1 BJC-1 24 MEO(Medium Earth Orbit) satellites, which 

belongs Walker24/3/2 constellation with 55° 
inclination and 21500km orbital altitude Medium scale 3 

BJC-1 
KHC-1 
SNC-1 

Table 3 Parameters of antennas 

Station Antenna Elevation angle Azimuth angle Location (longitude, latitude) 

BJC BJC-1 [15,90] [0,360] （116.388,39.929） 

KHC KHC-1 [15,90] [0,360] （75.98, 39.455） 

SNC SNC-1 [15,90] [0,360] （109.505, 18.243） 

Computational Results Analysis. We executed algorithms for 10 times and make a result statistic 
as follow diagrams. 

From Fig. 5, we can find that MOGA has better performance than NSGA2 in solving small scale 
instance. The same conclusion can be given from Fig. 7 in medium scale instance. But NSGA2 can 
get more solutions than MOGA, which will be more useful in practice. 

From Fig. 6, we can find that the result has better performance when the plan period is smaller in 
small scale instance. But from Fig. 10 we can find that the algorithm time is increasing as the plan 
period decreasing. The same conclusion can be given from Fig. 8 in medium scale instance. 

From Fig. 9, we can find that there is an obviously better result when the antennas number 
increasing, but as show in Fig. 10, the time also increasing sharply as the antennas number increasing. 

 

Fig. 5 Algorithm performance under different planPeriod in small scale 

   

Fig. 6 Performance of different algorithms in small scale 
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Fig. 7 Algorithm performance under different planPeriod in medium scale 

	 	
Fig. 8  Performance of different algorithms in medium scale 

 

Fig. 9  Performance of different algorithm in each instance 

 

Fig. 10 Algorithm time 

Conclusion 

In this paper, we carried out the research on SGTSTP, which is a complex multi-objective ground 
station scheduling problem. Firstly, we build the problem formulation and analyze the optimization 
objectives. Then we design a solving framework based on decomposition, in which we changed the 
task planning problem into a 0-1 programming problem. And then the MOGA and NSGA2 are 
selected to solve this multi-objective optimization problem. At last, two different scale simulation 
scenarios are designed based on the Compass navigation system of China, and the computational 
result shows that more periods can get better result but spend more time, besides, the MOGA has 
better performance in efficiency and effect than NSGA2 in solving SGTSTP. In the future, we will 
continue researching on the multi-objective ground station scheduling problem, and the new and 
effective multi-objective algorithms and scheduling problem with more complex constrains will be 
focused  emphasis. 
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