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Abstract. A periodic ratio-dependent predator-prey system with time delay is investigated. By
using a continuation theorem based on coincidence degree theory, the sufficient conditions of the
existence of periodic solution of the system are obtained, which generalizes the known result.

Introduction

Ratio-dependent predator-prey models have received much attention recently as more suitable
ones for predator-prey interactions where predation involves searching process. A typical
ratio-dependent predator-prey model can be express in the form
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where y, and y, stand for prey and predator density, respectively. a,b,c,d, f andm are positive
constants. For the ecological sense of system (1), we refer to [1] and reference therein. System (1)
was systematically studied by Kuang and Beretta [1] and Arditi and coworkers[2-7]. They discussed
global stability of the boundary equilibria, positive equilibrium, and permanence of the system.
Therefore, paper [8] is interesting and important to study the following periodic ratio-dependent
system with time delays
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with initial conditions

Yi(8) =, (8),s €[-7.,01,¢,(5) > 0,9, € C([-z,0,R,),i =1,2. €)
where a(t),b(t),c(t),m(t),d(t) and f(t) are strictly positive continuous  -periodic functions.
r,and z,are nonnegative constants, r = max{z,,z,}. They obtained the sufficient conditions of the

positive periodic solution of the system as follows
Theorem1.1 Assume the following conditions are satisfied
(H) f(t)—-d(t)>0,
(H,) ma—-c>0.
Then system (2) has at least one positive  -periodic solution.
We will be concerned with a more general system as follows
, c®)y; (1)
y.(t) =y, ®)[a) —b)y,(t—7,) — ,
(t) O[at) —b®)y, (t—7,) m(t)yzp(t)ﬂllp(t)] @)
’ _ . fOy (t—7,)
V2O =y OO e s oo
initial conditions also is (3), where a(t),b(t),c(t), m(t),d(t) and f (t) are strictly positive continuous
w -periodic functions. p>1is a real number. Our purpose in this paper is, by using the

mt)y,(t—z,)+ v, (t-7,) .
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continuation theorem of coincidence degree theory, to establish the existence conditions of at least
one positive @ -periodic solution of system(4).

Main results

For convenience of use, we introduce the continuation theory [9] as follows.
Lemma2.1 Let Q< X be an open bounded set. Let L be a Fredholm mapping of index zero
and Nbe L-compacton Q.Assume
(a) foreach 41e(01), xeoQNDomL, Lx= ANX;
(b) foreach xeoQNKerL, QNx=0;
(C) deg{IJQON,QNKerl,0}=0.
Then Lx = Nx has at least one solution in QN DomL.
Lemma2.2 RZ={(y,,Y,)|y, >0,i=12}is positive invariant set of system (4).
Proof From equation (4),we can obtain
t c(s)y; (s)
t) =y, (0)ex a(s)—b(s)y,(s—r7,) -
Y.(t) = v, (0)exp{[ [a(s) - b(S)y, (s - 7,) RTINS
f(s)y/(s—7,)
m(s)y, (s—17,) + Yy, (s—7,)

]ds} >0, for y,(0)>0,

Y,(t) = y, @) exp{[[ [-d(5) +

The proof is complete.
In what follows we shall use the notations

__1 @ I _ . u
f_;jo Ot f'=min £(t), f*=max ()

Jds} >0, for y,(0)>0.

where f is a continuous  -periodic function. Our main result in this paper is the following
theorem about the existence of a positive @ -periodic solution of system (4).

Theorem2.1  Assume the following conditions are satisfied

(Hy) f(®)-d®>0,

(Hz) ma-c>0.
Then system (4) has at least one positive @ -periodic solution.

Proof Let
X () =Iny (), x,(t)=Iny,(t). (5)
On substituting (5) into (4), we rewrite (4) in the form
e Ay Cw c(t){exp(x, (t))}"
X, (t) = a(t) b(t) exp(X1 (t Tl)) m(t){exp(x2 (t))}p +{eXp(X1 (t))}p ) o
X; (t) S (t) + f (t){exp(xl (t — 7 ))}p

m(t){exp(x, (t —7,))}" +exp(x, (t —7,))}" l
So to complete the proof, it suffices to show that system (6) has at least one w -periodic solution.
Take

X =Y ={(x,(t), %, ()" € C(R,R?): x, (t + @) = X (t),i =1,2},
|00 %, = max(( %, @) 11 x, 1))

Then X and Y are Banach spaces with the above norm |||, Set
L:DomLc X -,

L(x, (1), %, ()" = (x; (1), 3 (1)),
where DomL ={(x,(t),x,(t))" eC*(R,R*)},and N:X =Y,
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c(t){exp(x, (1))}
m(t){exp(x, (1))}" +{exp(x, ())}" |
L+ f (Ofexp(x ()Y
m(t){exp(x, (1))} +{exp(x, (1))}’
With these notations system (6) can be written in the form Lx=Nx,xe X.
Obviously, KerL=R?, ImL :{(xl(t),xz(t))T eX :J.wai (t)dt =0,i =1,2}is closed in Y, and

dimKerL =codimImL = 2. Therefore Lis a Fredholm mapping of index zero. Now define two
projectorsP: X — X ,and Q:Y —Y as

P{xl(t)}zq{xl(t)}{@} {xl(t)}e Xy
O] “eO] %] [0

Then Pand Q are continuous projectors such thatImP = KerL,KerQ =ImL =Im(l - Q). We
select J, the isomorphism of ImQonto KerLas identity map. Furthermore through an easy
computation we find that the inverse K, of L; has the form

Ky :ImL — DomL () KerP,

t 1 re t
Ko (y) = J, y(s)ds == | "dt [ y(s)ds .
Then QN : X —»Y and K (I -Q)N: X — X read

ijow [a(t) —b(t) exp(x, (t—17,)) -
w

{xl (t)} a(t) - b(t)exp(x, (t—7,)) -

Xt

c(t){exp(x, (1))} dt
m(t){exp(x, ()}" +{exp(x, (1))}’
f(O){exp(x,(t—7,))}"
m(t){exp(x, (t —7,))}" +{exp(x, (t - 7,))}"
K, (1 —Q)NX = j; NXx(s)ds — % j: dt j; NXx(s)ds — (% - %) jo”’ NX(s)ds .

Clearly, QN and K, (I —Q)N are continuous. By using the Arzela-Ascoli theorem, it is not

QNx = 1
= [-d(®)+
w

difficult to prove that K, (I —Q)N(Q)is compact for any open bounded setQ c X . Moreover,
QN(Q) is bounded. Therefore N is L -compact on Q with any open bounded set Qc X .
Corresponding to the operator equation Lx = ANx, 4 € (0,1) , we have

, c(t){exp(x, (1))}

X (t) = A[a(t) —b(t) exp(x, (t —7,)) — mOLexp(x, ()} +{exp( ()} 1 -

f (O){exp(x, (t —7,))}" 1
m(t){exp(x, (t —7,))}" +exp(x, (t —7,))}°
Suppose that (x,(t), X, (t))" e X is a solution of (7) for a certain A € (0,1). Integrating (7) over the
interval [0, ], we obtain

J.Ow Ala(t) —b(t)exp(x, (t —7,)) —

Xy (1) = A[-d (1) +

c(t){exp(x, (1))}"
m(t){exp(x, (1))}" +{exp(x, (1))}’
f(Ofexp(x, (£ 7)) K= [ x4t =0
m(t){exp(x, (t —7,))}" +exp(x, (t —7,))}° 0

]&:f@@ﬁ:Q

jo’” A[-d(t) +

That is
o B c(t){exp(x,(1))}" e .
I B xR ) O +oxpm @ L b 208 =3 ©
JO(” f (t){exp(xl (t -7, ))}p ]dt _ .[Owd (t)dt — aa)

m(t){exp(x, (t —7,))} +exp(x, (t —7,))}’
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It follows from (7) and (8) that
c(t){exp)x, (1)}’

jo | X!(t)] dt < jo [a(t) + b(t) exp(x, (t —7,)) + Y S R oy Jdt
=2aw, 9)
I(ul X; (t) | dt S Iw[d (t) + f(t){exp(xl (t - TZ ))}p ]dt
0 0 m(t){exp(x, (t —7,))}" +{exp(x, (t—7,))}’
=2dw. (10)
Since (x,(t),%,(t))" € X, there exist &,n, [0, ®]such that
X (&)= tg[]oiyg] X; (1),

X; (17;) = max x; (t),

te[0,w]

i=12. (11)

Then from (8) we have

exp(x, (£,)) jo’”b(t)dt < jo”’b(t) exp(x, (t—7,))dt < dw,
which implies

X, (&) < In% = A

This, together with (9), leads to

X, (t) < X, (&) + jo“’| X'(t)|dt < A +23w. (12)
From (8), we also have

exp(x, (m,)) || b(t)dt > ["b(t) exp(x, (t 7))t

—aw— j‘” c(t){exp(x, (1))}’ 4> ma—c
o m(t){exp(x, (1))}" +{exp(x, (1)}’ m"

which implies

ma—c
X, (7)) >In——=A,.
bm

This, together with (9), leads to

X ()2 % (7)~ [[1X®) | dt > A, - 280 (13)
It follows from (12) and (13) that
max | x,(8) [« max{| A, || A, [}+280 = R,. (14)

From (11) and the second equation of (7), we can derive

f (O{exp(x, (&, —7,))}°

—d(&) + : -
m(&,)exp(x, (5, —7,))}° +{exp(x, (&, —7,))}
which is equivalent to
d(&,)m(E){exp(x, (S, — 7,0} =[(5,) —d(&)Kexp(x, (S, -7} (15)
Seté, -7, =1, +Nw, where t, €[0,w], n isan integer. Since periodicity of (X, (t), X, (t))", we get
X (&, —7,) = X (tp), (16)
X, (S, —7,) =X, (ty).
It follows from (14), (15) and (16) that
e 00) € M nE S| IS [ R A
This, together with (10), leads to
max | x, (1) <)%, (to) [ +[ 1 %; () | dt < A, +2dw = R,. (17)
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On the other hand, let’s consider algegraic equation

7B exp() - ﬂ{eXp(Xz)} [ c(t) g0,
o m(tHexp(x,)}" +{exp(x)}’ -
{eXp(X )}’ I f(t) _o,
o m(t){exp(x,)}* +{exp(x,)}’
for (x,x,)’ eRZ,Where 1 €[01]. Similar arguments in (14) and (17) show that
|X|<maX{|A1||A|}<R : (19)
| X I<maX{—||n[ ] |—|I [ ] }+R <R,. (20)

Clearly, R,and R,are lndependent of i . Take M =2R, + 2R, , and define
Q={(x (1), %, ()" € X [ (x. (1), %, ()" < M}

Itis clear that Q verifies the conditions (a) and (b) in Lemma2.1.
In order to verify the condition (c) in Lemma2.1, we define
¢ :DomL (N KerLx[01] —» X
by
a—bexp(x,)
$0 00 =| g (PO o )
® °© m(t){exp(x,)}* +{exp(x,)}’
_{exp(x,)}’ Jw c(t)
tH o ° m(t){exp(x,)}" +{exp(x,)}’
0
where u e[01]is a parameter. If @(x,,X,,x) =0, then (x,,X,)"is the constant solution of the
equation (18). From (19) and (20) we know
d(X,, X,, 1) #0 on 0Q M KerL.
So due to homotopy invariance theorem of topology degree we have
deg(JQN (x,,Xx,)", QN KerL,(0,0)")
= deg(#(x,, X,,1), QN KerL,(0,0)")
= deg(#(x,, X,,0), QN KerL,(0,0)")
= deg((@ —b exp(x,),—d +
{exp(x,)}’ Iw f(t)
o o m(t){exp(x,)}" +{exp(x,)}"
It is easy to see that the following algebraic equation
a—bexp(x,) =0,
3, 00" - {0
o ° m(t){exp(x,)}" +{exp(x,)}"
has a unique solution (x;,x,)" € R?. Thus
deg(JQN (x,,%,)", QN KerL,(0,0)")
~bexp(x) 0
=500 3 _{o0)Y v f ()dt RCUSSAE mofoe (=1#0.
o [m(O){exp(x)}" +{exp(x)}'T’ o ° (m(t){exp(x;)}" +{exp(x)}' T
By now we have proved that Q satisfies all conditions in Lemma2.1. Hence (6) has at least

one  -periodic solution. Accordingly, system (4) has at least one positive  -periodic solution.
The proof is complete.

dt)", QN KerL,(0,0)").
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Remark If p =1, the result becomes Theorem 1.1.

Conclusion

In this paper, we discussed the existence of positive periodic solution to a Ratio-Dependent
Predator- Prey System with Time Delays. Sufficient conditions are obtained for the existence of
positive periodic solution to system (4). Our work generalizes the known result.
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