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Abstract. A periodic ratio-dependent predator-prey system with time delay is investigated. By 
using a continuation theorem based on coincidence degree theory, the sufficient conditions of the 
existence of periodic solution of the system are obtained, which generalizes the known result. 

Introduction 
Ratio-dependent predator-prey models have received much attention recently as more suitable 

ones for predator-prey interactions where predation involves searching process. A typical 
ratio-dependent predator-prey model can be express in the form 
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where 1y  and 2y  stand for prey and predator density, respectively. fdcba ,,,, and m are positive 
constants. For the ecological sense of system (1), we refer to [1] and reference therein. System (1) 
was systematically studied by Kuang and Beretta [1] and Arditi and coworkers[2-7]. They discussed 
global stability of the boundary equilibria, positive equilibrium, and permanence of the system. 
Therefore, paper [8] is interesting and important to study the following periodic ratio-dependent 
system with time delays 
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with initial conditions 
  .2,1),],0,([,0)(],0,[),()( =−∈>−∈= + iRCssssy iiii τϕϕτϕ                 (3) 

where )(),(),(),(),( tdtmtctbta and )(tf are strictly positive continuous ω -periodic functions. 

1τ and 2τ are nonnegative constants, },max{ 21 τττ = . They obtained the sufficient conditions of the 
positive periodic solution of the system as follows 
Theorem1.1 Assume the following conditions are satisfied 
   (H1) ,0)()( >− tdtf  

   (H2) 0>− cma . 
Then system (2) has at least one positive ω -periodic solution.  

We will be concerned with a more general system as follows  

          










−+−
−

+−=′

+
−−−=′

].
)()()(

)()()()[()(

],
)()()(

)()()()()()[()(

2122

21
22

12

2
1111

ττ
τ

τ

τyτyτm
τyτfτdτyτy

τyτyτm
τyτcτyτbτaτyτy

pp

p

pp

p

                  (4) 

initial conditions also is (3), where )(),(),(),(),( tdtmtctbta and )(tf are strictly positive continuous 
ω -periodic functions. 1≥p is a real number. Our purpose in this paper is, by using the 
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continuation theorem of coincidence degree theory, to establish the existence conditions of at least 
one positive ω -periodic solution of system(4).  

Main results 
For convenience of use, we introduce the continuation theory [9] as follows. 
Lemma2.1  Let X⊂Ω be an open bounded set. Let L be a Fredholm mapping of index zero 

and N be L -compact on Ω . Assume 
(a) for each )1,0(∈λ , Lx DomΩ∂∈ , NxLx λ≠ ; 
(b) for each Lx KerΩ∂∈ , 0≠QNx ; 
(c) 0}0,Ker,deg{ ≠Ω LJQN 

. 
Then NxLx =  has at least one solution in LDomΩ . 

Lemma2.2  }2,1,0|),{( 21
2 =>=+ iyyyR i is positive invariant set of system (4). 

Proof  From equation (4),we can obtain 
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The proof is complete. 
In what follows we shall use the notations 
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where f  is a continuous ω -periodic function. Our main result in this paper is the following 
theorem about the existence of a positive ω -periodic solution of system (4). 

Theorem2.1  Assume the following conditions are satisfied 
   (H1) 0)()( >− tdtf ,  
   (H2) 0>− cma . 
Then system (4) has at least one positive ω -periodic solution. 
   Proof  Let 
                      )(ln)( 11 tytx = , )(ln)( 22 tytx = .                                  (5) 
On substituting (5) into (4), we rewrite (4) in the form  
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            (6) 

So to complete the proof, it suffices to show that system (6) has at least one ω -periodic solution. 
Take 
         }2,1),()(:)R,R())(),({( 2

21 ==+∈== itxtxCtxtxYX ii
T ω , 

                  |))(||,)((|max))(),(( 21],0[21 txtxtxtx
t

T

ω∈
= . 

Then X and Y are Banach spaces with the above norm ||•||, Set 
                        ,Dom: YXLL →⊂   

   TT txtxtxtxL ))(),(())(),(( 2121 ′′= , 

where )}R,R())(),({(Dom 21
21 CtxtxL T ∈= , and YXN →: , 
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With these notations system (6) can be written in the form XxNxLx ∈= , . 

   Obviously, 2RKer =L , }2,1,0d)(:))(),({(Im
021 ==∈= ∫ ittxXtxtxL i

T ω
is closed in Y , and 

2ImdimcoKerdim == LL . Therefore L is a Fredholm mapping of index zero. Now define two 
projectors XXP →: , and YYQ →: as  
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Then P and Q  are continuous projectors such that −=== ILQLP Im(ImKer,KerIm  )Q . We 
select J , the isomorphism of QIm onto LKer as identity map. Furthermore through an easy 
computation we find that the inverse PK of PL has the form  
                       PLLK P KerDomIm: → ,  
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Then YXQN →:  and XXNQIK P →− :)( read 
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   Clearly, QN and NQIK P )( − are continuous. By using the Arzela-Ascoli theorem, it is not 

difficult to prove that )()( Ω− NQIK P is compact for any open bounded set X⊂Ω . Moreover, 
)(ΩQN is bounded. Therefore N is L -compact on Ω with any open bounded set X⊂Ω . 

Corresponding to the operator equation )1,0(, ∈= λλNxLx , we have  
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Suppose that Xtxtx T ∈))(),(( 21 is a solution of (7) for a certain )1,0(∈λ . Integrating (7) over the 
interval ],0[ ω , we obtain 
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That is  
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It follows from (7) and (8) that 
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It follows from (14), (15) and (16) that 
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   On the other hand, let’s consider algegraic equation 
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for 2
21 R),( ∈Txx , where ]1,0[∈µ . Similar arguments in (14) and (17) show that 
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   Clearly, 1R and 2R are independent of λ . Take 21 22 RRM += , and define 
                  }||))(),((:||))(),({( 2121 MtxtxXtxtx TT <∈=Ω . 
It is clear that Ω  verifies the conditions (a) and (b) in Lemma2.1. 

In order to verify the condition (c) in Lemma2.1, we define 
                     XLL →× ]1,0[KerDom: φ   

by  
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where ]1,0[∈µ is a parameter. If 0),,( 21 =µφ xx , then Txx ),( 21 is the constant solution of the 
equation (18). From (19) and (20) we know  
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   It is easy to see that the following algebraic equation  
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   By now we have proved that Ω  satisfies all conditions in Lemma2.1. Hence (6) has at least 
one ω -periodic solution. Accordingly, system (4) has at least one positive ω -periodic solution. 
The proof is complete. 
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   Remark If 1=p , the result becomes Theorem 1.1. 

Conclusion 
In this paper, we discussed the existence of positive periodic solution to a Ratio-Dependent 

Predator- Prey System with Time Delays. Sufficient conditions are obtained for the existence of 
positive periodic solution to system (4). Our work generalizes the known result.  
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