Existence of Positive Periodic Solution of a Ratio-Dependent Predator- Prey System with Time Delays

Xinyi Chen

China Minorities Information Technology Institute, Northwest Minzu University, Lanzhou 730030, China

Keywords: predator-prey system; time delay; periodic solution; coincidence degree
Abstract. A periodic ratio-dependent predator-prey system with time delay is investigated. By using a continuation theorem based on coincidence degree theory, the sufficient conditions of the existence of periodic solution of the system are obtained, which generalizes the known result.

Introduction

Ratio-dependent predator-prey models have received much attention recently as more suitable ones for predator-prey interactions where predation involves searching process. A typical ratio-dependent predator-prey model can be express in the form

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=y_{1}(t)\left(a-b y_{1}(t)-\frac{c y_{2}(t)}{m y_{2}(t)+y_{1}(t)}\right], \tag{1}\\
y_{2}^{\prime}(t)=y_{2}(t)\left[-d+\frac{f y_{1}(t)}{m y_{2}(t)+y_{1}(t)}\right],
\end{array}\right.
$$

where y_{1} and y_{2} stand for prey and predator density, respectively. a, b, c, d, f and m are positive constants. For the ecological sense of system (1), we refer to [1] and reference therein. System (1) was systematically studied by Kuang and Beretta [1] and Arditi and coworkers[2-7]. They discussed global stability of the boundary equilibria, positive equilibrium, and permanence of the system. Therefore, paper [8] is interesting and important to study the following periodic ratio-dependent system with time delays

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=y_{1}(t)\left[a(t)-b(t) y_{1}\left(t-\tau_{1}\right)-\frac{c(t) y_{2}(t)}{m(t) y_{2}(t)+y_{1}(t)}\right] \tag{2}\\
y_{2}^{\prime}(t)=y_{2}(t)\left[-d(t)+\frac{f(t) y_{1}\left(t-\tau_{2}\right)}{m(t) y_{2}\left(t-\tau_{2}\right)+y_{1}\left(t-\tau_{2}\right)}\right]
\end{array}\right.
$$

with initial conditions

$$
\begin{equation*}
y_{i}(s)=\varphi_{i}(s), s \in[-\tau, 0], \varphi_{i}(s)>0, \varphi_{i} \in C\left([-\tau, 0], R_{+}\right), i=1,2 . \tag{3}
\end{equation*}
$$

where $a(t), b(t), c(t), m(t), d(t)$ and $f(t)$ are strictly positive continuous ω-periodic functions. τ_{1} and τ_{2} are nonnegative constants, $\tau=\max \left\{\tau_{1}, \tau_{2}\right\}$. They obtained the sufficient conditions of the positive periodic solution of the system as follows
Theorem1.1 Assume the following conditions are satisfied
$\left(\mathrm{H}_{1}\right) f(t)-d(t)>0$,
$\left(\mathrm{H}_{2}\right) \overline{m a-c}>0$.
Then system (2) has at least one positive ω-periodic solution.
We will be concerned with a more general system as follows

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=y_{1}(t)\left[a(t)-b(t) y_{1}\left(t-\tau_{1}\right)-\frac{c(t) y_{2}^{p}(t)}{m(t) y_{2}^{p}(t)+y_{1}^{p}(t)}\right], \tag{4}\\
y_{2}^{\prime}(t)=y_{2}(t)\left[-d(t)+\frac{f(t) y_{1}^{p}\left(t-\tau_{2}\right)}{m(t) y_{2}^{p}\left(t-\tau_{2}\right)+y_{1}^{p}\left(t-\tau_{2}\right)}\right] .
\end{array}\right.
$$

initial conditions also is (3), where $a(t), b(t), c(t), m(t), d(t)$ and $f(t)$ are strictly positive continuous ω-periodic functions. $p \geq 1$ is a real number. Our purpose in this paper is, by using the
continuation theorem of coincidence degree theory, to establish the existence conditions of at least one positive ${ }^{\omega}$-periodic solution of system(4).

Main results

For convenience of use, we introduce the continuation theory [9] as follows.
Lemma2.1 Let $\Omega \subset X$ be an open bounded set. Let L be a Fredholm mapping of index zero and N be L-compact on $\bar{\Omega}$. Assume
(a) for each $\lambda \in(0,1), x \in \partial \Omega \cap \operatorname{Dom} L, L x \neq \lambda N x$;
(b) for each $x \in \partial \Omega \cap \operatorname{KerL}, \quad Q N x \neq 0$;
(c) $\operatorname{deg}\{J Q N, \Omega \cap \operatorname{KerL}, 0\} \neq 0$.

Then $L x=N x$ has at least one solution in $\bar{\Omega} \cap$ Dom L.
Lemma2.2 $R_{+}^{2}=\left\{\left(y_{1}, y_{2}\right) \mid y_{i}>0, i=1,2\right\}$ is positive invariant set of system (4).
Proof From equation (4),we can obtain

$$
\begin{aligned}
& y_{1}(t)=y_{1}(0) \exp \left\{\int_{0}^{t}\left[a(s)-b(s) y_{1}\left(s-\tau_{1}\right)-\frac{c(s) y_{2}^{p}(s)}{m(s) y_{2}^{p}(s)+y_{1}^{p}(s)}\right] \mathrm{d} s\right\}>0, \text { for } y_{1}(0)>0, \\
& y_{2}(t)=y_{2}(0) \exp \left\{\int_{0}^{t}\left[-d(s)+\frac{f(s) y_{1}^{p}\left(s-\tau_{2}\right)}{m(s) y_{2}^{p}\left(s-\tau_{2}\right)+y_{1}^{p}\left(s-\tau_{2}\right)}\right] \mathrm{d} s\right\}>0, \text { for } y_{2}(0)>0 .
\end{aligned}
$$

The proof is complete.
In what follows we shall use the notations

$$
\bar{f}=\frac{1}{\omega} \int_{0}^{\omega} f(t) \mathrm{d} t, \quad f^{l}=\min _{t \in[0, \omega]} f(t), \quad f^{u}=\max _{t \in[0, \omega]} f(t)
$$

where f is a continuous ω-periodic function. Our main result in this paper is the following theorem about the existence of a positive ω-periodic solution of system (4).

Theorem2.1 Assume the following conditions are satisfied
$\left(\mathrm{H}_{1}\right) \quad f(t)-d(t)>0$,
$\left(\mathrm{H}_{2}\right) \overline{m a-c}>0$.
Then system (4) has at least one positive ω-periodic solution.

Proof Let

$$
\begin{equation*}
x_{1}(t)=\ln y_{1}(t), \quad x_{2}(t)=\ln y_{2}(t) . \tag{5}
\end{equation*}
$$

On substituting (5) into (4), we rewrite (4) in the form

$$
\begin{align*}
& x_{1}^{\prime}(t)=a(t)-b(t) \exp \left(x_{1}\left(t-\tau_{1}\right)\right)-\frac{c(t)\left\{\exp \left(x_{2}(t)\right)\right\}^{p}}{m(t)\left\{\exp \left(x_{2}(t)\right)\right\}^{p}+\left\{\exp \left(x_{1}(t)\right)\right\}^{p}}, \tag{6}\\
& x_{2}^{\prime}(t)=-d(t)+\frac{f(t)\left\{\exp \left(x_{1}\left(t-\tau_{2}\right)\right)\right\}^{p}}{\left.m(t)\left\{\exp \left(x_{2}\left(t-\tau_{2}\right)\right)\right\}^{p}+\exp \left(x_{1}\left(t-\tau_{2}\right)\right)\right\}^{p}} .
\end{align*}
$$

So to complete the proof, it suffices to show that system (6) has at least one ω-periodic solution. Take

$$
\begin{aligned}
X=Y= & \left\{\left(x_{1}(t), x_{2}(t)\right)^{T} \in C\left(\mathrm{R}, \mathrm{R}^{2}\right): x_{i}(t+\omega)=x_{i}(t), i=1,2\right\}, \\
& \left\|\left(x_{1}(t), x_{2}(t)\right)^{T}\right\|=\max _{t \in[0, \omega]}\left(\left|x_{1}(t)\right|,\left|x_{2}(t)\right|\right) .
\end{aligned}
$$

Then X and Y are Banach spaces with the above norm $\|\cdot\|$, Set

$$
L: \operatorname{Dom} L \subset X \rightarrow Y
$$

$$
L\left(x_{1}(t), x_{2}(t)\right)^{T}=\left(x_{1}^{\prime}(t), x_{2}^{\prime}(t)\right)^{T}
$$

where $\operatorname{Dom} L=\left\{\left(x_{1}(t), x_{2}(t)\right)^{T} \in C^{1}\left(\mathrm{R}, \mathrm{R}^{2}\right)\right\}$, and $N: X \rightarrow Y$,

$$
N\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
a(t)-b(t) \exp \left(x_{1}\left(t-\tau_{1}\right)\right)-\frac{c(t)\left\{\exp \left(x_{2}(t)\right)\right\}^{p}}{m(t)\left\{\exp \left(x_{2}(t)\right)\right\}^{p}+\left\{\exp \left(x_{1}(t)\right)\right\}^{p}} \\
-d(t)+\frac{f(t)\left\{\exp \left(x_{1}(t)\right)\right\}^{p}}{m(t)\left\{\exp \left(x_{2}(t)\right)\right\}^{p}+\left\{\exp \left(x_{1}(t)\right)\right\}^{p}}
\end{array}\right] .
$$

With these notations system (6) can be written in the form $L x=N x, x \in X$.
Obviously, $\operatorname{Ker} L=\mathrm{R}^{2}$, $\operatorname{Im} L=\left\{\left(x_{1}(t), x_{2}(t)\right)^{T} \in X: \int_{0}^{\omega} x_{i}(t) \mathrm{d} t=0, i=1,2\right\}$ is closed in Y, and $\operatorname{dim} \operatorname{Ker} L=\operatorname{codim} \operatorname{Im} L=2$. Therefore L is a Fredholm mapping of index zero. Now define two projectors $P: X \rightarrow X$, and $Q: Y \rightarrow Y$ as

$$
P\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=Q\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
\bar{x}_{1} \\
\bar{x}_{2}
\end{array}\right],\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] \in X=Y .
$$

Then P and Q are continuous projectors such that $\operatorname{Im} P=\operatorname{Ker} L, \operatorname{Ker} Q=\operatorname{Im} L=\operatorname{Im}(I-Q)$. We select J, the isomorphism of $\operatorname{Im} Q$ onto $K e r L$ as identity map. Furthermore through an easy computation we find that the inverse K_{P} of L_{P} has the form

$$
K_{P}: \operatorname{Im} L \rightarrow \operatorname{Dom} L \cap \mathrm{Ker} P
$$

$$
K_{P}(y)=\int_{0}^{t} y(s) d s-\frac{1}{\omega} \int_{0}^{\omega} \mathrm{d} t \int_{0}^{t} y(s) \mathrm{d} s .
$$

Then $Q N: X \rightarrow Y$ and $K_{P}(I-Q) N: X \rightarrow X$ read

$$
\begin{gathered}
Q N X=\left[\begin{array}{l}
\frac{1}{\omega} \int_{0}^{\omega}\left[a(t)-b(t) \exp \left(x_{1}\left(t-\tau_{1}\right)\right)-\frac{c(t)\left\{\exp \left(x_{2}(t)\right)\right\}^{p}}{m(t)\left\{\exp \left(x_{2}(t)\right\}^{p}+\left\{\exp \left(x_{1}(t)\right)\right\}^{p}\right.}\right] \mathrm{d} t \\
\frac{1}{\omega} \int_{0}^{\omega}\left[-d(t)+\frac{f(t)\left\{\exp \left(x_{1}\left(t-\tau_{2}\right)\right)\right\}^{p}}{m(t)\left\{\exp \left(x_{2}\left(t-\tau_{2}\right)\right)\right\}^{p}+\left\{\exp \left(x_{1}\left(t-\tau_{2}\right)\right)\right\}^{p}}\right] \mathrm{d} t
\end{array}\right], \\
K_{P}(I-Q) N x=\int_{0}^{t} N x(s) d s-\frac{1}{\omega} \int_{0}^{\omega} \mathrm{d} t \int_{0}^{t} N x(s) \mathrm{d} s-\left(\frac{1}{\omega}-\frac{1}{2}\right) \int_{0}^{\omega} N x(s) \mathrm{d} s .
\end{gathered}
$$

Clearly, $Q N$ and $K_{P}(I-Q) N$ are continuous. By using the Arzela-Ascoli theorem, it is not difficult to prove that $\overline{K_{P}(I-Q) N(\bar{\Omega})}$ is compact for any open bounded set $\Omega \subset X$. Moreover, $Q N(\bar{\Omega})$ is bounded. Therefore N is L-compact on $\bar{\Omega}$ with any open bounded set $\Omega \subset X$. Corresponding to the operator equation $L x=\lambda N x, \lambda \in(0,1)$, we have

$$
\begin{align*}
& x_{1}^{\prime}(t)=\lambda\left[a(t)-b(t) \exp \left(x_{1}\left(t-\tau_{1}\right)\right)-\frac{c(t)\left\{\exp \left(x_{2}(t)\right)\right\}^{p}}{m(t)\left\{\exp \left(x_{2}(t)\right)\right\}^{p}+\left\{\exp \left(x_{1}(t)\right)\right\}^{p}}\right], \tag{7}\\
& x_{2}^{\prime}(t)=\lambda\left[-d(t)+\frac{f(t)\left\{\exp \left(x_{1}\left(t-\tau_{2}\right)\right)\right\}^{p}}{\left.m(t)\left\{\exp \left(x_{2}\left(t-\tau_{2}\right)\right)\right\}^{p}+\exp \left(x_{1}\left(t-\tau_{2}\right)\right)\right\}^{p}}\right] .
\end{align*}
$$

Suppose that $\left(x_{1}(t), x_{2}(t)\right)^{T} \in X$ is a solution of (7) for a certain $\lambda \in(0,1)$. Integrating (7) over the interval $[0, \omega]$, we obtain

$$
\begin{aligned}
& \int_{0}^{\omega} \lambda\left[a(t)-b(t) \exp \left(x_{1}\left(t-\tau_{1}\right)\right)-\frac{c(t)\left\{\exp \left(x_{2}(t)\right)\right\}^{p}}{m(t)\left\{\exp \left(x_{2}(t)\right)\right\}^{p}+\left\{\exp \left(x_{1}(t)\right)\right\}^{p}}\right] \mathrm{d} t=\int_{0}^{\omega} x_{1}^{\prime}(t) \mathrm{d} t=0, \\
& \int_{0}^{\omega} \lambda\left[-d(t)+\frac{f(t)\left\{\exp \left(x_{1}\left(t-\tau_{2}\right)\right)\right\}^{p}}{\left.m(t)\left\{\exp \left(x_{2}\left(t-\tau_{2}\right)\right)\right\}^{p}+\exp \left(x_{1}\left(t-\tau_{2}\right)\right)\right\}^{p}}\right] \mathrm{d} t=\int_{0}^{\omega} x_{2}^{\prime}(t) \mathrm{d} t=0 .
\end{aligned}
$$

That is

$$
\begin{align*}
& \int_{0}^{\omega}\left[b(t) \exp \left(x_{1}\left(t-\tau_{1}\right)\right)+\frac{c(t)\left\{\exp \left(x_{2}(t)\right)\right\}^{p}}{m(t)\left\{\exp \left(x_{2}(t)\right)\right\}^{p}+\left\{\exp \left(x_{1}(t)\right)\right\}^{p}}\right] \mathrm{d} t=\int_{0}^{\omega} a(t) \mathrm{d} t=\bar{a} \omega, \tag{8}\\
& \int_{0}^{\omega}\left[\frac{f(t)\left\{\exp \left(x_{1}\left(t-\tau_{2}\right)\right)\right\}^{p}}{\left.m(t)\left\{\exp \left(x_{2}\left(t-\tau_{2}\right)\right)\right\}^{p}+\exp \left(x_{1}\left(t-\tau_{2}\right)\right)\right\}^{p}}\right] \mathrm{d} t=\int_{0}^{\omega} d(t) \mathrm{d} t=\bar{d} \omega .
\end{align*}
$$

It follows from (7) and (8) that

$$
\begin{align*}
\int_{0}^{\omega}\left|x_{1}^{\prime}(t)\right| \mathrm{d} & \leq \int_{0}^{\omega}\left[a(t)+b(t) \exp \left(x_{1}\left(t-\tau_{1}\right)\right)+\frac{\left.\left.c(t)\{\exp) x_{2}(t)\right)\right\}^{p}}{m(t)\left\{\exp \left(x_{2}(t)\right)\right\}^{p}+\left\{\exp \left(x_{1}(t)\right)\right\}^{p}}\right] \mathrm{d} t \\
= & 2 \bar{a} \omega, \tag{9}\\
\int_{0}^{\omega}\left|x_{2}^{\prime}(t)\right| \mathrm{d} t & \leq \int_{0}^{\omega}\left[d(t)+\frac{f(t)\left\{\exp \left(x_{1}\left(t-\tau_{2}\right)\right)\right\}^{p}}{m(t)\left\{\exp \left(x_{2}\left(t-\tau_{2}\right)\right)\right\}^{p}+\left\{\exp \left(x_{1}\left(t-\tau_{2}\right)\right)\right\}^{p}}\right] \mathrm{d} t \\
& =2 \bar{d} \omega . \tag{10}
\end{align*}
$$

Since $\left(x_{1}(t), x_{2}(t)\right)^{T} \in X$, there exist $\xi_{i}, \eta_{i} \in[0, \omega]$ such that

$$
\begin{align*}
& x_{i}\left(\xi_{i}\right)=\min _{t \in[0, \omega]} x_{i}(t), \quad i=1,2 . \\
& x_{i}\left(\eta_{i}\right)=\max _{t \in[0, \omega]} x_{i}(t), \tag{11}
\end{align*}
$$

Then from (8) we have

$$
\exp \left(x_{1}\left(\xi_{1}\right)\right) \int_{0}^{\omega} b(t) \mathrm{d} t \leq \int_{0}^{\omega} b(t) \exp \left(x_{1}\left(t-\tau_{1}\right)\right) \mathrm{d} t<\bar{a} \omega
$$

which implies

$$
x_{1}\left(\xi_{1}\right)<\ln \frac{\bar{a}}{\bar{b}}:=A_{1} .
$$

This, together with (9), leads to

$$
\begin{equation*}
x_{1}(t) \leq x_{1}\left(\xi_{1}\right)+\int_{0}^{\omega}\left|x^{\prime}(t)\right| d t<A_{1}+2 \bar{a} \omega . \tag{12}
\end{equation*}
$$

From (8), we also have

$$
\begin{aligned}
& \exp \left(x_{1}\left(\eta_{1}\right)\right) \int_{0}^{\omega} b(t) \mathrm{d} t \geq \int_{0}^{\omega} b(t) \exp \left(x_{1}\left(t-\tau_{1}\right)\right) \mathrm{d} t \\
& \\
& =\bar{a} \omega-\int_{0}^{\omega} \frac{c(t)\left\{\exp \left(x_{2}(t)\right)\right\}^{p}}{m(t)\left\{\exp \left(x_{2}(t)\right)\right\}^{p}+\left\{\exp \left(x_{1}(t)\right)\right\}^{p}} \mathrm{~d} t \geq \frac{\overline{m a-c}}{m^{u}} \omega
\end{aligned}
$$

which implies

$$
x_{1}\left(\eta_{1}\right)>\ln \frac{\overline{m a-c}}{\bar{b} m^{u}}:=A_{2} .
$$

This, together with (9), leads to

$$
\begin{equation*}
x_{1}(t) \geq x_{1}\left(\eta_{1}\right)-\int_{0}^{\omega}\left|x^{\prime}(t)\right| d t>A_{2}-2 \bar{a} \omega \tag{13}
\end{equation*}
$$

It follows from (12) and (13) that

$$
\begin{equation*}
\max _{t \in[0, \omega]}\left|x_{1}(t)\right|<\max \left\{\left|A_{1}\right|,\left|A_{2}\right|\right\}+2 \bar{a} \omega:=R_{1} . \tag{14}
\end{equation*}
$$

From (11) and the second equation of (7), we can derive

$$
-d\left(\xi_{2}\right)+\frac{f(t)\left\{\exp \left(x_{1}\left(\xi_{2}-\tau_{2}\right)\right)\right\}^{p}}{m\left(\xi_{2}\right)\left\{\exp \left(x_{2}\left(\xi_{2}-\tau_{2}\right)\right)\right\}^{p}+\left\{\exp \left(x_{1}\left(\xi_{2}-\tau_{2}\right)\right)\right\}^{p}}=0,
$$

which is equivalent to

$$
\begin{equation*}
d\left(\xi_{2}\right) m\left(\xi_{2}\right)\left\{\exp \left(x_{2}\left(\xi_{2}-\tau_{2}\right)\right)\right\}^{p}=\left[f\left(\xi_{2}\right)-d\left(\xi_{2}\right)\right]\left\{\exp \left(x_{1}\left(\xi_{2}-\tau_{2}\right)\right)\right\}^{p} \tag{15}
\end{equation*}
$$

Set $\xi_{2}-\tau_{2}=t_{0}+n \omega$, where $t_{0} \in[0, \omega], n$ is an integer. Since periodicity of $\left(x_{1}(t), x_{2}(t)\right)^{T}$, we get

$$
\begin{align*}
& x_{1}\left(\xi_{2}-\tau_{2}\right)=x_{1}\left(t_{0}\right), \\
& x_{2}\left(\xi_{2}-\tau_{2}\right)=x_{2}\left(t_{0}\right) . \tag{16}
\end{align*}
$$

It follows from (14), (15) and (16) that

$$
\left|x_{2}\left(t_{0}\right)\right| \leq \max \left\{\frac{1}{p}\left|\ln \left[\frac{f-d}{m d}\right]^{u}\right|, \frac{1}{p}\left|\ln \left[\frac{f-d}{m d}\right]^{l}\right|\right\}+R_{1}:=A_{3} .
$$

This, together with (10), leads to

$$
\begin{equation*}
\max _{t \in[0, \omega]}\left|x_{2}(t)\right| \leq\left|x_{2}\left(t_{0}\right)\right|+\int_{0}^{\omega}\left|x_{2}^{\prime}(t)\right| d t<A_{3}+2 \bar{d} \omega:=R_{2} . \tag{17}
\end{equation*}
$$

On the other hand, let's consider algegraic equation

$$
\begin{align*}
& \bar{a}-\bar{b} \exp \left(x_{1}\right)-\frac{\mu\left\{\exp \left(x_{2}\right)\right\}^{p}}{\omega} \int_{0}^{\omega} \frac{c(t)}{m(t)\left\{\exp \left(x_{2}\right)\right\}^{p}+\left\{\exp \left(x_{1}\right)\right\}^{p}} \mathrm{~d} t=0, \tag{18}\\
& -\bar{d}+\frac{\left\{\exp \left(x_{1}\right)\right\}^{p}}{\omega} \int_{0}^{\omega} \frac{f(t)}{m(t)\left\{\exp \left(x_{2}\right)\right\}^{p}+\left\{\exp \left(x_{1}\right)\right\}^{p}} d t=0,
\end{align*}
$$

for $\left(x_{1}, x_{2}\right)^{T} \in \mathrm{R}^{2}$, where $\mu \in[0,1]$. Similar arguments in (14) and (17) show that

$$
\begin{gather*}
\left|x_{1}\right| \leq \max \left\{\left|A_{1}\right|,\left|A_{2}\right|\right\} \leq R_{1}, \tag{19}\\
\left|x_{2}\right| \leq \max \left\{\frac{1}{p}\left|\ln \left[\frac{f-d}{m d}\right]^{u}\right|, \frac{1}{p}\left|\ln \left[\frac{f-d}{m d}\right]^{l}\right|\right\}+R_{1} \leq R_{2} . \tag{20}
\end{gather*}
$$

Clearly, R_{1} and R_{2} are independent of λ. Take $M=2 R_{1}+2 R_{2}$, and define

$$
\Omega=\left\{\left(x_{1}(t), x_{2}(t)\right)^{T} \in X:\left\|\left(x_{1}(t), x_{2}(t)\right)^{T}\right\|<M\right\} .
$$

It is clear that Ω verifies the conditions (a) and (b) in Lemma2.1.
In order to verify the condition (c) in Lemma2.1, we define

$$
\phi: \operatorname{Dom} L \cap \operatorname{Ker} L \times[0,1] \rightarrow X
$$

by

$$
\begin{aligned}
\phi\left(x_{1}, x_{2}, \mu\right) & =\left[\begin{array}{l}
\bar{a}-\bar{b} \exp \left(x_{1}\right) \\
-\bar{d}+\frac{\left\{\exp \left(x_{1}\right)\right\}^{p}}{\omega} \int_{0}^{\omega} \frac{f(t)}{m(t)\left\{\exp \left(x_{2}\right)\right\}^{p}+\left\{\exp \left(x_{1}\right)\right\}^{p}} \mathrm{~d} t
\end{array}\right] \\
& +\mu\left[\begin{array}{l}
-\frac{\left\{\exp \left(x_{2}\right)\right\}^{p}}{\omega} \int_{0}^{\omega} \frac{c(t)}{m(t)\left\{\exp \left(x_{2}\right)\right\}^{p}+\left\{\exp \left(x_{1}\right)\right\}^{p}} \mathrm{~d} t \\
0
\end{array}\right]
\end{aligned}
$$

where $\mu \in[0,1]$ is a parameter. If $\phi\left(x_{1}, x_{2}, \mu\right)=0$, then $\left(x_{1}, x_{2}\right)^{T}$ is the constant solution of the equation (18). From (19) and (20) we know

$$
\phi\left(x_{1}, x_{2}, \mu\right) \neq 0 \text { on } \partial \Omega \cap \operatorname{KerL} .
$$

So due to homotopy invariance theorem of topology degree we have

$$
\begin{aligned}
& \operatorname{deg}\left(J Q N\left(x_{1}, x_{2}\right)^{T}, \Omega \cap \operatorname{Ker} L,(0,0)^{T}\right) \\
& \quad= \operatorname{deg}\left(\phi\left(x_{1}, x_{2}, 1\right), \Omega \cap \operatorname{KerL} L(0,0)^{T}\right) \\
& \quad= \operatorname{deg}\left(\phi\left(x_{1}, x_{2}, 0\right), \Omega \cap \operatorname{Ker} L,(0,0)^{T}\right) \\
&=\operatorname{deg}\left(\left(\bar{a}-\bar{b} \exp \left(x_{1}\right),-\bar{d}+\right.\right. \\
&\left.\left.\frac{\left\{\exp \left(x_{1}\right)\right\}^{p}}{\omega} \int_{0}^{\omega} \frac{f(t)}{m(t)\left\{\exp \left(x_{2}\right)\right\}^{p}+\left\{\exp \left(x_{1}\right)\right\}^{p}} d t\right)^{T}, \Omega \cap \operatorname{Ker} L,(0,0)^{T}\right) .
\end{aligned}
$$

It is easy to see that the following algebraic equation

$$
\begin{aligned}
& \bar{a}-\bar{b} \exp \left(x_{1}\right)=0, \\
& -\bar{d}+\frac{\left\{\exp \left(x_{1}\right)\right\}^{p}}{\omega} \int_{0}^{\omega} \frac{f(t)}{m(t)\left\{\exp \left(x_{2}\right)\right\}^{p}+\left\{\exp \left(x_{1}\right)\right\}^{p}} \mathrm{~d} t=0
\end{aligned}
$$

has a unique solution $\left(x_{1}^{*}, x_{2}^{*}\right)^{T} \in \mathrm{R}^{2}$. Thus

$$
\begin{aligned}
& \operatorname{deg}\left(\operatorname{JQN}\left(x_{1}, x_{2}\right)^{T}, \Omega \cap \operatorname{KerL} L,(0,0)^{T}\right) \\
= & \operatorname{sgn}\left[\bar{d}-\frac{\left\{\exp \left(2 x_{1}^{*}\right)\right\}^{p}}{\omega} \int_{0}^{\omega} \frac{-\bar{b} \exp \left(x_{1}^{*}\right)}{\left[m(t)\left\{\exp \left(x_{2}^{*}\right)\right\}^{p}+\left\{\exp \left(x_{1}^{*}\right)\right\}^{p}\right]^{2}}-\frac{\left\{\exp \left(x_{1}^{*}+x_{2}^{*}\right)\right\}^{p}}{\omega} \int_{0}^{\omega} \frac{0}{\left[m(t)\left\{\exp \left(x_{2}^{*}\right) f(t)\right\}^{p}+\left\{\exp \left(x_{1}^{*}\right)\right\}^{p}\right]^{2}}\right]=1 \neq 0 .
\end{aligned}
$$

By now we have proved that Ω satisfies all conditions in Lemma2.1. Hence (6) has at least one ω-periodic solution. Accordingly, system (4) has at least one positive ω-periodic solution. The proof is complete.

Remark If $p=1$, the result becomes Theorem 1.1.

Conclusion

In this paper, we discussed the existence of positive periodic solution to a Ratio-Dependent Predator- Prey System with Time Delays. Sufficient conditions are obtained for the existence of positive periodic solution to system (4). Our work generalizes the known result.

Acknowledgement

This work supported by the open project program of Key Lab of China's National Linguistic Inf ormation Technology, Northwest Minzu University

References

[1] Kuang Y, Beretta E. Global qualitative analysis of a ratio-dependent predator-prey system[J]. J. Math. Biol, 1998, 36:389-406.
[2] Arditi R, Saiah H. Empirical evidence of the role of heterogeneity in ratio-dependent consumption[J]. ecology,1992,73(5):1544-1551.
[3] Arditi R, Gimzburg L R, Akcakaya H R. Variaiton in plankton densities among lakes: A case for ratio-dependent model[J]. American Naturalists, 1991,138(5):1287-1296.
[4] Arditi R, Perrin N, Saiah H. Functional response and heterogeneities: An experiment test with cladocerans[J]. OIKOS,1991,60(1):69-75.
[5] Chen F. On a periodic multi-species ecological model[J]. Applied Mathematics and Computation, 2005,171(1):492-510.
[6] Chen F. On a nonlinear non-autonomous predator-prey model with diffusion and distributed and distributed delay[J]. Journal of Computational and Applied Mathematics, 2005,180(1):33-49.
[7] Kuang Y. Delay differential equation with application in population dynamics[M]. NY: Academic Press,1993,67-70.
[8] Ding X, Cheng S. Existence of postitive periodic solution of a ratio-dependent predator-prey system with time delays[J]. Pure and Applied Mathematics,2006,22(1):112-116.
[9] Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations[M]. Berlin: Springer-Verlag, 1977.
[10] Wang Y, Chaolu T, Chen Z. Using reproducing kernel for solving a class of singular weakly nonlinear boundary value problems[J].International Journal of Computer Mathematics, 2010,87(2):367-380..

