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Abstract. In this paper, we introduce a split general mixed variational inequality problem which is a
natural extension of a split variational inequality problem, mixed variational and variational
inequality problems in Hilbert spaces.Using the resolvent operator technique, we propose an
iterative algorithm for a split general mixed variational inequality problem and discuss some special
cases.Further,we discuss the convergence criteria of these iterative algorithms. The results presented
in this paper generalize, unify and improve many previously known results for mixed variational
and variational inequality problems.

Introduction

It is well known that the mixed variational inequality problem is a generalized form of a
variational inequality problem, having applications in different areas of optimization, optimal
control, operation research, economics equilibrium and free boundary value problems.The mixed
variational inequality has been extensively studied including its various generalizations in a general
setting. In recent years, considerable interest has been shown in developing various extensions and
generalizations of split variational inequality problem. By using the projection method, the authors
of [2] introduced and studied split general quasi-variational inequality problem. [1, 3] introduced
gap function and global error bounds for generalized mixed quasivariational inequalities. [6] studied
the split common null point problem. [8] introduced and studied algorithms for the split variational
inequality problems. Kazmi and Rizvi [12] introduced the iterative approximation of a common
solution of a split generalized equilibrium problem and a fixed point problem for nonexpansive
semigroup. Some split variational inequality problems and some examples, see the references
therein.

Inspired and motivated by the above work, in this paper, we introduce and study a split general
mixed variational inequality problem (in short, SpGMVIP) which is a natural extension of a split
variational inequality problem (in short SpVIP), mixed variational and variational inequality
problems in Hilbert spaces. By using the resolvent operator technique, we propose an iterative
algorithm for a split general mixed variational inequality problem and discuss some special cases.
Furthermore, we discuss the convergence criteria of these iterative algorithms. It is of further
research effort to extend the iterative method presented here to solving split variational inclusions
[11], the split equilibrium problem [12] and split general quasi-variational inequality problem[2].

Throughout the paper unless stated otherwise, for each ie {1,2}, let H,be a real Hilbert space

with inner product (--yand norm ||| Letf :H, —»H;,g;:H, — H,be nonlinear mappings and
A: H, — H,a bounded linear operator with its adjoint operator A", Letg,: H, — R U {+o}with
Img, ndomog, = J, O¢, denotes the subdifferential of a proper, convex and lower

semi-continuous functiong,: H — R U {+w}.

An important generalization of the variational inequality is the mixed variational inequality
problem. The mixed variational inequality problem (in short, MVIP) is to find x; € H, such that
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<f1(X1)’ Y1 _)(1>"'§0(X1)_¢7(Y1)Z 0,Vy, e H,. (1
In this paper, we consider the following split general mixed variational inequality problem (in
short, SPGMVIP): Find x; € H, such thatgl(xl*)e domdg, and

<f1(x1* ) X, — 0, (x; )> +olg,(x; ))— p(x,)>0, vx, eH,, (2)
and such thatx; = Ax, and g Z(XZ )e domdg, solves
<fz(X§)v X; — 92(X3)>+<0(92(X§))—¢(Xz)2 0, Vx, e H,. 3)

Now, we observe a special case of SpGMVIP (2)-(3).
If we setg, =1, ,wherel,is an identity operator onH,, then SpGMVIP (2)-(3) is reduced to the

following split mixed variational inequality problem (in short, SpMVIP): Find x; € H, such that
X, € domdg, and

<f1(x1*), xl—xf>+go(xl*)—(p(xl)2 0, Vx, eH,, (4)
and such that x, = Ax, and x; € domdg, solves
<f2(x§),x2—x§>+go(x;)—go(x2)20, VX, € H,. (5)

Which appears to be new.
Ifp,: H — RuU {+oo}is the indicator function of closed convex setC,c H;, then the split mixed
variational inequality problem is reduced to split general variational inequality problem (in short,
SpGVIP): Find x; € C, such that

<f1(xl*), xl—gl(xl*»zo, vx, € C,, (6)
and such that x, = Ax, e C,solves

<f2(x;‘),x2—gz(x;‘)>20, vx, €C,. (7)

If @,: H — RuU {+oo}is the indicator function of closed convex setC,c H, andg, = I,, where

I,is an identity operator onH;, then the split mixed variational inequality problem is reduced to
split variational inequality problem (in short, SpVIP): Find x; e C,such that
<fl(xl*), X, — xl*> >0, vx e€C,
and such that x;, = Ax, e C,solves
<f2(x;‘), X, — gz(xz» >0, Vx,eC,.
IfwesetH, =H,, f,=f,,g, =1, then SpGMVIP (2)-(3) is reduced to MVIP (1).

Iterative algorithms
For eachi e {1,2}, it is well known that
- fi(xi*)eaq)i (gi(xi*))
Further, it is easy to see that the following is true:
gi(xi*)_pi fi(xi*)e (I + P09, )gi(xi*)
We have
gi<xi*): ‘]Z(p' (gi(xi*)_pi f1<xl*))’
forp, >0, where J % : H, — H, defined asJ " ()= (I — p,d¢), " ()is a resolvent operator of d¢;.
Based on the above arguments, we propose the following iterative algorithm for approximating a
solution to SpGMVIP (2)-3). Let {a”}g (0.1)be a sequence such that D~ a" =+w.

Algorithm 1. Givenx_ € H,, compute the iterative sequences {x{‘}defined by the following of
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iterative schemes:

gl(yn): Jﬁqﬁ (gl(xln )_ P fl(xln ))’ (12)
gz(zn): J,a;(pz (gz(Ayn)_pz fz(Ay”)), (13)
xl””:(l—a”)xl”+a”[y”+7/A*(z”—Ay")] (14)

Foralln=012,---, p,, 0,,7 > 0.
If g, =1,,then Algorithm 1 is reduced to the following iterative algorithm for SpMVIP (4)-(5):

Algorithm 2. Givenx € H,, compute the iterative sequences {xl”}defined by the following of
iterative schemes:

gl(yn)z Vi (Xln — P fl(xln )),
0,(2")= 9 (Ay" - o, 1, (Ay" ),
X = (l—a”)xl” +a”[y” +;/A*(z“ - Ay”)]
Foralln=012,---, p,, p,,7 >0.
Ifp;: H — R {+}is the indicator function of closed convex setC,c H,, then Algorithm 1 is
reduced to the following iterative algorithm for SpGVIP (6)-(7):

Algorithm 3([2]). Given x, e C, ,compute the iterative sequences {xl”}defined by the following of
iterative schemes:

6.(y")=P. (@) £ 10
gz(zn )= Fe, (gz(Ay” )_ P2 fz(Ayn ))’

XM= (L—a" X +a"[y" A (2" - Ay )]

Foralln=012,---, p,, p0,,7 >0.

Ifp,: H — RU {+w}is the indicator function of closed convex setC,c H,,and g, =I,, where
I,is an identity operator onH,, then Iterative Algorithm 1is reduced to the following iterative
algorithm for SpVIP (8)-(9):

Algorithm 4([10]). Givenx_ € C,, compute the iterative sequences {xl”}defined by the following
of iterative schemes:

0.(y")=Pe, (0 = o, 1. (7))
gz(zn)= P(:2 (Ayn -p,f, (Ayn))a
X =(l-a" ) +aty" + A (2" - Ay )|
Foralln=012,---, p,, p0,,7 > 0.
Ifweset H,=H,, f,=f,,g =1, forallx,ie{L2}, then Iterative Algorithm 1 is reduced to the
following iterative algorithm for MVIP (1.1):

Algorithm 5. Givenx_ € H,, compute the iterative sequences {xl“}defined by the following of
iterative schemes:

=350 - p 1,0
X =(l-a" ¢ +a"y".

Definition 1. A nonlinear mapping f, : H, — H, is said to be
(i) o, -strongly monotone if there exists a constant e, > 0 such that
(£,(x)~ £,(X), x—%) > ot [x— %] for allx,X € H,,
(i) B, -Lipschitz continuous if there exists a constant 4, > 0 such that
|f.(x)- f.(x)|< 8% —%| forallx,xeH,.
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Lemmal([9]). Letp: H —> R u{+ oo}be a proper convex lower semi-continuous function. Then

for a constant p >0, the resolvent operator of its subdifferential mapping J?’ :(I —pago)'l is
nonexpansive, that is
HJﬁ‘”(x)—J/‘j‘/’(ij‘g||x—Y|| forallx,Xx e H.

Main Results

Theorem1. For eachi e {1,2}, letg, : H, — H, ber,-Lipschitz continuous such that(g, -1, )is o,
-strongly monotone, where I, is the identity operator on H,. Let f.:H, —» H, be ¢, -strongly
monotone with respect to g,and g, -Lipschitz continuous. Let A:H, — H,be a bounded linear
operator and let A*be its adjoint operator. Suppose x; € H, is a solution to SpPGMVIP (2)-(3). Then

the sequence {xl”}generated by Algorithm1 converges strongly to x,” provided that the constant p,, »
satisfy the following conditions:

pl';_}< 4 7;121 4 oy > P ki k= 12_|_O-21;_21’k1<fl,
922—722-2'02062+'022ﬂ22,p2>0,}/e[0, 22}
20,+1 ||A||
Proof. Since x; e H, is a solution to SpGMVIP (2)-(3), then we hav
0,6 )= 377 (0. (¢ )= 21 (0 )) (15)
0. (Ax )= 377 (g, (A )~ p, T, (AX; )} (16)

Forp, >0. From Algorithm 1 (12) ,(15) and Lemma 1, we have
Hgl(yn )_ gl(xl* l‘ = ‘ ‘]Zpl (gl(xln )_ P1 fl (Xln ))_ JZ% (gl(xik )_ P1 fl(xf )1‘

= Hgl(xln )_ gl(xf )_ pl(fl(xln )_ f, (Xl )}‘

Next, since f,is «, -strongly monotone with respect to g,and g, -Lipschitz continuous, and g, be
7, -Lipschitz continuous, we have

Hgl(xln)_ gl(x:)—pl(fl(xl”)— fl(xz)nz
=00 )~ 0,0 | 201 (1060 )- 60 g )= 046 ) 1) 165 )

< (712 -2pjon + pfﬂf}
As a result we obtain

Hgl(yn )_ gl(Xf 1‘ = \/2'12 -2p0 + B X~ Xl*H - (17)
Since(g, — 1, )is o, -strongly monotone, we have

v =" <]on(y")-oa () - 2((0 1)y~ (0. - 1)Ky = %)

< Hgl(yn )— gl(Xl* 1‘2 - 20,
Which implies

2
n *
x|

2
n *
y _Xlu'

n * l n *

y" x| < m\\gl(y )-a,(x )] (18)
From (17) and (18), we have

y'-x H < Gy||x; — X/ H (19)
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2 _ 2 2
where¢9l:\/rl 2,;1051 +1p1’81 . Similarly, from Algorithm 1 (13), (16), Lemma 1 and using the
o, +

facts that f, is«a, -strongly monotone with respect to g, and f, -Lipschitz continuous,(gl— |1)iSO'1
-strongly monotone, and g, is 7, -Lipschitz continuous, we have

Hgl(zn )_ gl(Axl* 1‘ < \/722 -2p,a, + pzzﬁz2 HAyn - AX;H . (20)
2" - A | < 6, Ay" - AX; |, (21)

2 2 n2
where 6, :\/72 2’;2“2 +1'02'32 . Next, from Algorithm 1 (14), we have
o,+

xl””—xl*”s(l—a"] y" =X, —;/A*(Ay” —Axf}‘+yHA*(z” —Axl*m (22)
Further, using the definition of A*, the fact that A*is a bounded linear operator WithHA*H=||A||,

and given condition on y, we have

y' =X —yA*(Ay” — AX; 1‘2

y" — xl"‘H2 - 27/<y” — X, A*(Ayn — AX; )>+ 72HA* (AyrI — AX; 1‘2

x{‘—xf”+a”u

(23)
<ly" x| - A ra v - ax|
<|y" - xf”z.
From (21), we have
a2 - ax; ) <Az - Ax; | < o, | Allay" - Ax ][ < 6, Ay - xi] (24)

Combining (23) and (24) with inequality (3.8), we have
X[ — xl*H < [1—a“(1—¢9)] X — xl*H :

where 6 = 6,1+ 7| A|*6,). Hence, after n iterations, we obtain
Xon =X | < TTR-a;@-6)]%, x| (25)
j=1

It follows from the conditions on p, and p,thatd e (0.1).Since X7, a" =+wand @ < (0,1), this
implies in the light of [13] that
lim[[.-,(t-0)|=0.

i=1

nN—o0

Thus it follows from (3.11) that {xn}converges strongly to x*as n—+o . Since A is
continuous,it follows from (17) and (19)-(21) that y" — X/, gl(y”)—> gl(xf), Ay" —> AX ’
2" — Ax;and gz(z")—> gz(Axi*)asn — +oo0. This completes the proof.

If we setg, =1., then Theorem 1 reduces to the following result for the convergence of
Algorithm 2 for SpMVIP (4) -(5).

Corollary 2. For eachie{l,2}, let f,:H, — H, be ¢, -strongly monotone and f, -Lipschitz
continuous. Let A: H, — H,be a bounded linear operator and let A*be its adjoint operator. Suppose
X, € H,is a solution to SpMVIP (4)-(5). Then the sequence {xl“}generated by Algorithm 2
converges strongly to x, provided that the constants p, and y satisfy the following conditions:

[ 2 2(1_k2)
/71'0{_2< 4 IBlz = o> B 1_k12’k1: L )
B B 1+ 26,
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6, =1-2p,0,+ p; 3,0, > 0,7 € (O,ﬁ}

If we setH, =H,, f, = f,,g, = 1,, for all x,,i € {1,2}, then Theorem 1 is reduced to the following

result for the convergence of Algorithm 5 for MVIP (1).
Corollary 3. For eachie{L,2}, let f, :H, — H,bea, -strongly monotone and g, -Lipschitz

continuous. Suppose x; € H,is a solution to MVIP (1). Then the sequence {xl”}generated by

Algorithm 5 converges strongly to x; provided that the constants p, satisfies 0< p, < %.
1
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