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Abstract. With the rapid development of Chinese air transportation, the performance of the Chinese 
air route network (ARN) becomes more and more important. Since the location of air route waypoints 
(ARWs) is crucial for the performance of ARN, we propose an ARW optimization model in this 
paper. In the model, the cooperative coevolving particle swarm optimization (CCPSO) is adopted to 
optimize the location of ARWs. The simulation results show that CCPSO can effectively decrease the 
total flight conflict coefficient and improve the performance of the Chinese ARN. Our work will be 
helpful to better understand and optimize the Chinese air route network. 

Introduction 
The air route is the real track that every flight travels from one airport to another. In the air route 

network (ARN), airports or air waypoints are nodes and links are denoted by the air route segments. 
Airports are the points that generate and absorb air traffic flow while air waypoints are the points that 
only transmit traffic flow without generating or absorbing any air traffic flow. There are two kinds of 
waypoints in ARN, one is the air route waypoints (ARWs) and the other is the crossing waypoints 
(CWs). An ARW is a navigation marker which keeps the pilots informed about the desired track [1,2], 
while a CW is a crossing point where two or more aircrafts may encounter with each other. 

With the rapid development of air transportation, researchers and practitioners have pay great 
attention in past decades to improve the efficiency and safety of the air transportation system [3,4]. 
Different models aiming to optimize the performance of ARN have been proposed and some 
important aspects have been taken into account [5,6], such as flights efficiency, potential conflict and 
airspace capacity. Siddiquee [5] firstly presented a mathematical model to quantify various attributes 
of the air route network. Mehadhebi et al. [7] proposed an approach to minimize the total airline cost 
of the ARN. Zhou et al. [8] proposed a multi-objective optimization algorithm to minimize both 
airline costs and flight conflicts. Cai et al. [9] proposed a bi-objective optimization model to solve the 
crossing waypoint location (CWL) problems. Their approach not only reduces the total airline cost 
(TAC) but also decreases the total flight conflict coefficients (TFCC). Jin et al. [10] proposed a 
triple-objectives model to solve the CWL problems, where three key factors (flights efficiency, 
potential conflict and airspace capacity) are investigated.  

Since the number of ARWs is larger than that of CWs, it is more difficult to optimize the location 
of ARWs. It is known that the cooperative coevolution (CC) algorithms [11-14] are suitable for 
solving large-scale optimization problems, and the particle swarm optimization (PSO) is an effective 
solution to solve complicated optimization problems. Thus, in this paper, we use the cooperative 
coevolving particle swarm optimization (CCPSO) to optimize the location of ARWs of the Chinese 
ARN. 

The rest of this paper is organized as follows. Section 2 describes the CCPSO algorithm in detail. 
Section 3 presents the ARW optimization model based on the CCPSO. Section 4, simulation results 
and correspondent theoretical analysis are provided. Finally, we give the including remarks in section 
5. 
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The CCPSO Algorithm 
The CC algorithms can be regarded as automatic approaches to implement the divide-and-conquer 

strategy [11-14] and are quite effective for large-scale optimization problems. The particle swarm 
optimization (PSO) is a nature-inspired algorithm that has shown excellent performance in solving 
many real optimization problems. The CCPSO is a comprehensive optimization algorithm, where 
PSO and CC are incorporated together. The framework of CCPSO can be summarized as follows: 

(1) Problem decomposition: A high-dimensional decision vector is decomposed into some smaller 
subcomponents. This is a dynamically grouping process, where the variables are selected randomly to 
form groups and a scheme is used to dynamically determine the size of the coevolving subcomponent 
variables. 

(2)  Subcomponent optimization: The algorithm of Cauchy and Gaussian PSO is used to optimize 
the subcomponents. In the algorithm, each swarm is located in a ring topology structure, which is 
potential to slow down the speed of convergence and maintains the diversity of population.  

(3) Subcomponents coadaptation: Since interdependencies may exist between subcomponents, 
coadaptation is essential to capture such interdependencies during the optimization process. It is 
necessary to combine all subcomponents to a complete decision vector. The best individual from 
other subpopulations will be used when the objective function is calculated. 

The ARW Optimization Model  
Actually, the ARW location optimization problem is a high-dimension problem. The challenge of 

the location optimization of the ARWs is two-fold: first, a typical problem involves a large number of 
design variables; second, the objective function is non-differentiable. It is difficult to solve these 
problems by using traditional optimization algorithms [15-17], which suffer from the “curse of 
dimensionality”, i.e., the performance will deteriorate rapidly as the dimensionality of search space 
increases. In our ARW optimization model, we will adopt the CCPSO [14] algorithm to optimize the 
location of ARWs. 

The target of the ARW optimization model is to optimize the location of ARWs within a limited 
airspace. Following the previous work [9], the mathematical formulation of the ARW optimization 
problem has three assumptions and principles: 

(1) The ARN is defined as a planar graph, without considering aircrafts’ climbing or descending 
among different flight levels. 

(2) The trajectory of each flight is always the shortest path in the ARN. 
(3) Since the airport is a part of flight trajectory, we define the position of airports as one of the 

decision variables. 
An ARW is a navigation marker whose longitude and latitude coordinates are determined by the 

ground navaids. Thus, the location of airports and ARWs can be represented as 2-dimensional 
vectors, 

xmin
i ≤xi≤xmax

i , ∀i∈{1, …, n},   ymin
i ≤yi≤ymax

i , ∀i∈{1, …, n},                                                         （1） 
where xi and yi represent the location of ARW i. 

Objective: The objective can be measured by the total flight conflict coefficient (TFCC). Here, the 
TFCC is a reference value indicating how “dangerous” the network is. Generally, the larger the total 
flight conflict is, the higher the flight conflicting risk is. 

min TFCC = ∑ ∑ ∑ fji∙fki∙S

V∙cos (
αjk

i

2 )

Ti
k=1

Ti
j=1
j≠k

n
i=1  ,                                                                                                             （2） 

where fji is the traffic flow from node j to node i, and fki is the traffic flow from node k to node i; 
ajk

i ∈[0,π] is the included angle between air routes ji and ki; S is the horizontal separation standard 
(km) of air traffic control, and V is the average cruising speed (km/h) of flights. 

Constraint:  The flight efficiency, which can be calculated by the total airline cost (TAC) of flights. 
min TAC = ∑ ∑ fij∙dij, m+n

j=1
m+n
i=1                                                                                                                          （3） 
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where fij is the traffic flow from node i to node j, dij is the Euclidean distance between node i and node 
j. 

In the optimization procedure, new path will be searched once the location of ARWs is changed, 
and the Floyd algorithm is used to search the new shortest path for each flight.  

Results and Analysis 
The data used in the paper are provided by the Air Traffic Management Bureau (ATMB) of China. 

The Chinese ARN contains 207 airports and 1499 waypoints. Here, we need to optimize 3412 
decision variables. Since the ARW optimization problem is a high-dimension and complicated 
problem, we use the set of G={500, 1000, 1500, 2000} to determine the size of the groups. The 
maximum number of fitness evaluations (FEs) is set to 10000, and the results over 10 independent 
runs are recorded. Table 1 shows the real value of the TFCC and TAC. 

Table 1 
 TAC0 TFCC0 
Value 2.397e+09 4.308e+08 

The original values of the TAC and TFCC. 
 

Firstly, we do experiment to find how the value of TAC is changed when the TFCC value goes 
from 0.1*TFCC0 to 10*TFCC0. The values of TAC for 10 runs are shown in Table 2. From Table 2, 
one can see that the changes between the TAC values are not obvious. Thus it is reasonable to set the 
TAC as the constraint and set the value of it within 0.1*TAC0 and 10*TAC0. 

Table 2 
The number of runs TAC  

1 2397286149 
2 2397285921 
3 2397286033 
4 2397285687 
5 2397285668 
6 2397285808 
7 2397285727 
8 2397285803 
9 2397285964 
10 2396971249 
The value of TAC over 10 runs. 
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Fig.1 The value of TFCC under CCPSO. 
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Table 3 
 TFCC  

best 1.972e+07 
median 7.105e+07 
mean 5.869e+07 
std. 2.993e+07 

The best, median, mean and std. value of TFCC under CCPSO. 
The results of TFCC over 10 independent runs are shown in Fig.1. Compared with the original 

value TFCC0, we can see that the TFCC values over 10 independent runs are obviously smaller than 
that of TFCC0. In Table 3, the best, median and mean values of TFCC over 10 independent runs are 
also displayed. This shows that the mean value of TFCC is also smaller than that of TFCC0. Fig. 2 
shows the mean, best and median TFCC value as a function of FEs, one can see that the value of them 
all decreases with the increment of FEs. Especially, in the case of “best”, we can drop the value of 
TFCC to 6.602e+07 by running only 2500 FEs. These results indicate that the CCPSO is an effective 
algorithm to solve the ARW location optimization problem.  
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Fig.2  (a) The mean TFCC value as a function of FEs. (b) The best TFCC value as a function of FEs. 

(c) The median TFCC value as a function of FEs. 
 

Conclusion 
To summarize, we have proposed a novel ARW optimization model by adopting the CCPSO 

algorithm, which aims to solve the air route waypoint location optimization problem. In the model, 
the total flight conflict coefficient (TFCC) is the objective and the total airline cost (TAC) is 
considered as the constraint. Experiment results demonstrate that the CCPSO algorithm is feasible 
and effective to solve the large-scale ARWs location optimization problem. In the future, we will use 
the CCPSO algorithm to optimize the location of crossing waypoints (CWs) in the Chinese air route 
network. 
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