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Abstract. Clustering is the method to partition unlabeled data, whitch is very important in 
bioinformatics. To overcome the difficult of balancing between different cluster criteria, we use 
multi-objective optimization to solve the problem. In this paper, we propose an Nelder-Mead based 
Marriage in Honey Bees Optimization C-means (NM-MBOC) algorithm for clustering. The pareto-
optimal front that gives the optimal number of clusters as a solution set is obtained by NM-MBOC. 
The convergence is proven by Markov Chain Theory. In the end, tested with the UCI datasets, the 
effectiveness of the proposed approach is shown.  

1. Introduction 

Clustering is an unsupervised classification method to partition data into subgroups in 
bioinformatics. One popularly known problem of clustering is that there isn’t clustering criteria can 
satisfy all the aspects. Some papers compliance with local density distributions [1], others integrate 
the results of a variety of different clustering methods [2][3]. 

To solve the problem of improper clustering criterion, one solution is to combine the results of 
several clustering methods; the other is to integrate several clustering criteria. The later one is an 
optimization problem of multi-objective and it has been shown to be superior to the former[7]. 
Many papers aim at  providing choice for a decision maker[4][5] and a few paper work on the 
situation of the clusters number determining the clustering criterion[6]. 

Optimization is a basic problem for many areas, such as bioinformatics, computational biology. 
Not only traditional optimization but also multiple objectives optimization is arousing a great 
interest[8]. 

Multi-objective optimization focuses on the optimization problem with multiple goals. A general 
format is to minimize y that defined in (1).  
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where x is the decision vector and X is the solution space. y is the objective function.  
In this paper, we will propose a new algorithm of Nelder-Mead based Marriage in Honey Bees 

Optimization C-means (NM-MBOC), utilizing the algorithm named Nelder-Mead based Marriage 
in Honey Bees Optimization (NM-MBO) as the multi-objective optimization tool. The pareto-
optimal will be obtained after running the multi-objective algorithm.  

Marriage in Honey Bees Optimization (MBO) is a swarm intelligence method was proposed by 
Jason Teo and Hussein A. Abbass[9][10] and has been updated by Jason Teo, Hussein A. Abbass 
[11] and Omid Bozorg Haddad et al [12][13]. Combing with Nelder-Mead method and C-means 
method, NM-MBOC is used for clustering. And its convergence is analyzed based on the theory of 
Markov Chain. 

The paper is organized as follows. As the basis of the study, Marriage in Honey Bees 
Optimization (MBO) algorithm and Nelder-Mead method are shown first in Section 2. The 
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proposed algorithm of Nelder-Mead based Marriage in Honey Bees Optimization C-means (NM-
MBOC) is given in Section 3. Section 4 uses Markov Chain theory to analyze the proposed 
algorithm’s convergence. Finally, some simulations, use UCI datasets, are done and conclusion is 
given.  

2. Nelder-Mead method and marriage in honey bees optimization (NM-MBO) 

2.1. Algorithm of marriage in honey bees optimization 
The behavior of honey-bees shows many features like cooperation and communication, so 

honey-bees have aroused great interests in modeling intelligent behavior these years.  
Marriage in Honey Bees Optimization (MBO) is a kind of swarm-intelligence method. And such 

swarm-intelligence has some successful applications. Ant colony is an example and the search 
algorithm is inspired by its behavior. Mating behavior of honey-bees is also considered as a typical 
swarm-based optimization approach. The behavior of Honey-bees is related to the product of their 
genetic potentiality, ecological and physiological environments, the social conditions of the colony, 
and various prior and ongoing interactions among these three [9][10].  

The five main processes of MBO are: (a) the mating-flight of the queen bees with drones 
encounter at some probabilistically. (b) creating new broods by the queen bees, (c) improving the 
broods’ fitness by workers, (d) updating the workers’ fitness, and (e) replacing the least fittest 
queen(s) with the fittest brood(s).  
2.2. Nelder-Mead method 

The Nelder-Mead method is a commonly used nonlinear optimization algorithm, proposed by 
Nelder & Mead [15]. It is a direct search method and does not use numerical or analytic gradients. 
The method uses the concept of simplex and finds a local minimum of a function with several 
variables. Nelder-Mead method can generate a new point by extrapolating the objective function 
measured at each point arranged as a simplex, and will replace one of them with the new one to 
keep the algorithm run.  

The basic process in a iteration is the following. 
 Order. Order the 1n  vertices to satisfy 1 2 1( ) ( ) ... ( )nf x f x f x    , using the tie-breaking 

rules given below. 

 Reflect. Compute the reflection point rx from 1( )r nx x x x    , 
1

n
i

i

xx n


  is the centroid of 

the n best points (all vertices except for 1nx  ). Evaluate ( )r rf f x . If 1 r nf f f  , accept rx  
and terminate the iteration. 

 Expand. If  1rf f , calculate the expansion point ex . ( )e rx x x x    and evaluate ( )e ef f x . 
If e rf f , accept ex ; otherwise accept rx . Terminate the iteration. 

 Contract. If r nf f , perform a contraction between x and the better of 1nx  and rx . 
 Perform a shrink step. Evaluate f at the n points 1 1( )i iv x x x   , 2,... 1i n  . The vertices 

of the simplex at the next iteration consist of 1 2 1, ,..., nx v v  . 
The merit of Nelder-Mead method is that it is not sensitive to starting values and neither does it 

rely on derivatives nor on continuity of the objective function.  

3. Nelder-Mead based Marriage in Honey Bees Optimization C-means (NM-MBOC) 
algorithim 

3.1. Algorithm of NM-MBO 
One of the most important advantages of MBO over Genetic Algorithm is MBO does a local 

search in each iteration. So MBO can avoid solely using crossover operator and mutation operator 
who is of worse local search ability.  
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But MBO algorithm chooses some simple and random local searching methods, such as random 
walk and random flip 0, which will reduce the probability of obtaining optimal solution. So such 
low efficiency of Worker in MBO badly influences the whole performance of MBO. 

So we utilize the local search ability and replace the Worker of MBO algorithm by the Nelder-
Mead method.  

Some studies related to MBO have been carried out in our research. One of them is to increase 
the convergence speed. Here we make some introduce about it, because the main work in this paper 
will based on such improved MBO algorithm. 

In MBO algorithm, the probability of a drone makes with a queen is defined by the annealing 
function 0. Not only the calculation of probability is complex, but also its calculation participants 
are complicated. So the whole process has a large computation burden.  

On the other hand, we have found that MBO with low speed need enough iteration times to 
approach optimization result. But several variables in MBO, such as energy, speed, can’t make sure 
about this. As the process going, the mating probability becomes smaller, which neither help the 
calculation process put up, nor help converge globally. So based on the original MBO algorithm, 
we have done some improvement on the original MBO algorithm. That is, by random initializing 
drones and restricting the condition of iteration, the computation process will become easier. The 
detail about this improvement has been discussed in other papers before. 

Here we further our research to improve the performance of MBO and propose an algorithm of 
Nelder-Mead -Marriage in Honey Bees Optimization (NMMBO) by taking the Nelder-Mead 
method and C-means method as the Workers.  
3.2. C-means clustering  based on NM-MBOC 

In Fig.1, we can define four operators: Crossover, Mutation, Heuristic(NM) and C-means. 
Crossover and Mutate are same as that in GA. But the Heuristic and C-means operator is a new one 
proposed in NM-MBOC.  

Crossover: Crossover operator exchanges the pieces of genes between chromosomes. Through 
crossover, it introduces new chromosomes to the population, and hence the possibility of having 
fitter chromosomes. In this algorithm one-point crossover can produced better results compared to 
multi-point after some initial experiments.  

Mutation: Mutation operation alters individual alleles at random locations of random 
chromosomes at a very probability. It might create a better or worse chromosome, which will either 
thrive or diminish through next selection.  

Heuristic: Heuristic operator improves a set of broods. It help conduct local search on broods. 
For the good local convergence performance, we use Nelder-Mead method as the heuristic operator. 

C-means: C-means is used to reanalyze cluster value; it calculates the cluster centre for each 
cluster; and then it re-assigns each gene to the cluster that is the closest one to the instance in the 
gene. Hence, C-means operator is used to speed up the convergence process. 

By the way, in Fig1,every Nelder Mead method is   followed by a fix box. The reason is: it is 
possible for Nelder Mead method to create illegal results. 
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Fig.1. Nelder-Mead-Marriage in Honey Bees Optimization C-means algorithm (NM-MBOC) 

4. Convergence analysis of NM-MBOC algorithm  

4.1. Markov chain 
Markov chain has been widely applied to GA. Markov chains (MCs) have been used extensively 

to study convergence characteristic. Such as many GA methods’ performance were analyzed by 
modeling the GA process as a Markov process. 

A Markov chain is a sequence of random values whose probability at a time interval depends 
upon the value of the number at the previous time. The probabilities of a Markov chain are usually 
entered into a transition matrix indicating which state or symbol follows which other state or 
symbol. 

Definition 1[14]: A square matrix is ij n n
A a


     

 
 

1

(a)  if  , 1, : 0, A is positive ( 0);

(b)  if  , 1, : 0, A is nonnegative ( 0);

(c)  if   0 and  : 0, A is primitive; 

(d)  if   0 and  {1, }: 1, A is stochastic.

ij

ij

m

n

ij
j

i j n a A

i j n a A

A m A

A i n a


   

   

   

   







                                         (2) 

Definition 2[14]: If the state space S  is finite ( S n ), and the transition probability  ijp t are 
independent from t ,  

   , , , , ij iji j S u v p u p v                                                   (3) 
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the Markov chain is said to be finite and homogeneous.  ijp t is the probability of transitioning 
from state i S  to state j S  at step t . 

Theorem 1[14]: For a homogeneous finite Markov chain, with the transition matrix ( )ijP p , If  
        : 0mm P                                            (4) 

then this Markov chain is ergodic and with finite distribution.  lim , ,ij j
t

p t p i j S


  is the steady 

distribution of the homogeneous finite Markov Chain.  
Theorem 2[14] (The basic limit theorem of Markov chain): If P is a primitive homogeneous 

Markov chain’s transition matrix, then  
(a)  ! 0: , :a probability vector.

(b)  (  is the start state and it's probability vector

       is ): lim

(c)  From  lim , we can get a limit probability matrix , 

  

T T T

i i

T k k T
i ik

k

k

P

S

g g P

P P P

   
 






  
 





     it is a matrix and it's all rows are same to  .Tn n 

                                    (5) 

Theorem 3[14]: Let P be a reducible stochastic matrix, where :C m m  is a primitive stochastic 
matrix and 0, 0R T  . Then  

1

0

0
0

lim lim
0

k

k
k

i k i kk k

i

C
C

P P
T RC T R






  



  
 

  
     

 


                                              (6) 

is a stable stochastic matrix.  
4.2 Convergence analysis 

The proposed algorithm is against solving Multi-Objective Optimization problem. And two 
objective functions are given: minimizing the number of clusters and minimizing the partitioning 
error.  

A common difficulty with the multi-objective optimization is the conflict between the objective 
functions. None of the feasible solutions allows optimal solutions for all the objectives. Pareto-
optimal is the solution, which offers the least objective conflict.  

When output(s1) of one objective function is fixed, turn to optimize the other objective 
function’s output(s2). If s2 can reach the optimal value, we can get the optimal solution under the 
condition of s1 is fixed. Then the problem is converted to a one objective optimization problem. 

If the following two can be proved, the proposed algorithm is convergent.  
For any fixed s1, the corresponding optimal solution of s2 can be gotten.  
On the other side, for any fixed s2, the corresponding optimal solution of s1 can be gotten. Then 

the problem is to prove the convergence of the above two one-objective optimization problem. 
Then we use Markov Chain to analysis the convergence of the Nelder-Mead-Marriage in Honey 

Bees Optimization C-means algorithm. 
There are only four ways to change from one generation to another, Crossover, Mutate, C-means 

and Heuristic. These operators depend only on the inputs and not restricted with time. Then we can 
get the following theorem. 

Definition 3: The state space of NM-MBOC is 
    1 2, , , 0,1 , 1, ,N iX x t t t t i N                                                    (7) 

where 1 2
, , ,

N
t t t  is the binary bit cluster listed in turn. 

Define  f x  as the fitness function based on X  and y is the fitness. So the fitness aggregate Y  is  

  ,Y y y f x x X                                                              (8) 

It is easy to see  
                             , 0x X y                                                                 (9) 

Define g Y , we can get a ordered aggregate  

              1 2 1 2
, , , ,

g g
y y y y y y                                                (10) 
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Crossover, Mutate, C-means and Heuristic operators lead to probable transition in the state space. 
And we use four transition matrix C , M , Cm and H to describe their infections respectively. Finally, 
we can get 

            Tr C M Cm H                                                              (11) 
where Tr  is the transition matrix of the Markov chain of the NM-MBOC algorithm. 
Theorem 4: The Markov Chain of NM-MBOC is finite and homogeneous. 
Proof:  
The aggregate  1 2, , , Mx x x is finite. So the Markov chain composed of  1 2, , , Mx x x is finite. 

This finite space can also be said as a state space X . 
With ,i j X   , the probability of transformation from the state i  to the state j  at step t  only 

depends on i and is independent of time. So the Markov chain of the NM-MBOC algorithm is 
homogeneous. 

End. 
Theorem 5: The transition matrixes of the crossover probability ( C ), Heuristic probability ( H ) 

and C-means probalility ( Cm ) in the NM-MBOC algorithm are all stochastic. 
Proof: 

The square matrix C  is ij n n
C c


    . Then  

 
1

, 1, : 0 {1, }: 1
n

ij ij

j

i j n c and i n c


                                              (12) 

So C is stochastic. 

The square matrix H  is ij n n
H h


    . Then,  

 
1

, 1, : 0 {1, }: 1
n

ij ij

j

i j n h and i n h


                                              (13) 

So H is stochastic. 
C-means operator is used to speed up the convergence process. So it’s operation is similar to 

Heuristic. 

The square matrix Cm  is ij n n
Cm cm


    . Then  

 
1

, 1, : 0 {1, }: 1
n

ij ij

j

i j n c and i n cm


                                              (14) 

So Cm is stochastic. 
End 
Theorem 6: The transition matrix of the NM-MBOC with mutation probability ( M ) is stochastic 

and positive. 
Proof: 

 ij n n
M m


  is a square matrix. Then 

 
1

, 1, : 0 {1, }: 1
n

ij ij

j

i j n m and i n m


                                              (15) 

So M  is stochastic. 
And the mutation has an influence on every position of a state vector. We can easily know 
,

i j
x x X  . Each position of ix  can mutate to the value of jx . So the probability of ix  mutate to jx is 

positive. So M  is positive. 
End 
Theorem 7: The Markov Chain of the NM-MBOC ( Tr ) is ergodic and with finite 

distribution  lim 0, ,ij jt
tr t tr i j X


   . 

Proof: 
According to Theorem 5, Theorem 6 and(11), Tr  is positive. And according to Theorem 1, this 

proposition is proved. 
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End 
Definition 4: The fitness of one generation is the largest one of the individuals in this generation. 

     1 2
1,2,...,

, max
K i

i K

f x x x f x


                                              (16) 

Define    
1 2 1 2 1 2
, , , , , , , , , ,

i K K i K
X x x x f x x x y x x x X     , i

y are defined at(10), that is, the fitness of all the 

individuals in i
X  is equal to i

y . 

Definition 5: For an arbitrary initial generation X(0) , 1
y is of the largest fitness,  

1lim Pr( ( ) ) 1( )
t

f X yt


                                                    (17) 
Then the algorithm is global convergence. 
Theorem 8: The NM-MBOC converges to the global optimum. 
Proof: 
We can define  

                      
i

TX X i N                                                        (18) 
For Definition 4 and Theorem 4, TX is a Markov Chain. In the same time, we define  

             ( )
i i

P X P iX X                                                      (19) 
iX is defined in (12). 

We can see that ( ) 0
i

P X   and 
1

( ) 1
n

i
i

P X


  

Define ( , )
i j

P X X is the probability state i
X  go to j

X , we can get 

   
1 1

( , ) , ,( , )
ji

NN

i j ni nj ni i nj j
ni nj

P X X x X x XP x x
 

                                          (20) 

Because NM-MBOC saves the best individual at every generation, ( , ) 0,
i j

P X X i j  . And the 

transition matrix of TX ’s Markov Chain can be write as follows: 

1 1 1

1

2 1 2 2

1

( , ) ( , )

( , ) ( , )

1 0 0

( , ) ( , )

0

( , ) ( , )

n

n n n

n n n

P X X P X X

P

P X X P X X

P X X P X X

P X X P X X





 
 
 
  

 
 
 
 
 
 



  





 

  

 

                                     (21) 

For Theorem 3， 

2 2 2 1

2 1

( , ) 0 ( , )

1, ,

( , ) ( , ) ( , )
n n n n

P X X P X X

C T R

P X X P X X P X X

  

   
   
   
      



   



                                           (22) 

1

0

0
0

lim lim
0

k

k
k

i k i kk k

i

C
C

P P
T RC T R


 

  



  
 

  
     

 


                                           (23) 

For Theorem 7 and Theorem 1, P is a stable random matrix, So 1R  .That is  
 

 

2 1

1

lim ( , ) 1

lim

1lim ( , )

k

k

k
k

n
k

P X X

kR R

P X X

 


 

 

 
  
       
    

                                             (24) 

So every state in TX  will go to 1
X , if the iteration number is big enough, this proposition is 

proved. 
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End 
It is applicable to the two conditions, so the algorithm can converge to the Pareto surface. 

5. Simulation  

To test the performance of proposed algorithm, we will do some simulations. We choose three 
datasets in UCI database and draw the dynamic curves of TWCV[6] and the number of clusters 
respectively. Fig.2 to Fig.3 are the test results 
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(c) 3D curves of TWCV and the number of clusters 

Fig.2. Curves on dataset 1 
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   (a) TWCV                         (b) the number of clusters 
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(c) 3D curves of TWCVand the number of clusters 

Fig.3. Curves on dataset 2 
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From the above, we can see that the proposed algorithm can converged according to the 
objective functions. 

6. Conclusions  

Using multi-objective optimization methods to solve clustering problem is useful, which can 
avoid weighting different results obtained from different clustering criteria. In this paper we 
proposed a new algorithm to solve clustering problem, naming as. Nelder-Mead Method based 
Honey Bees Optimization C-means (NM-MBOC) algorithm. NM-MBOC can not only avoid the 
local optimum, but also converge to the Pareto surface. Also NM-MBOC is easy to implement and 
has few parameters to adjust. And the global convergence is proved. Simulating on three UCI 
datasets show that the NM-MBOC is effective for clustering.  
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