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Abstract. Information sensing and test are premise and foundation of (Equipment Health 
Management, EHM), a reasonable sensor configuration not only provide accurate and complete 
fault information, but also improve fault diagnostics, fault prognostics and health state evaluation 
capability. To address the problem that the traditional test selection and optimization are mainly for 
fault detection and isolation, then, testability indices for EHM are firstly formulated quantitatively, 
then, test optimization selection model which minimizes test cost is modeled, and the generic 
algorithm is introduced to solve the problem. At last, a simulation case and an application case are 
given to verify & validate the proposed model and method. 

Introduction 

As Equipment Health Management (EHM) technology getting mature, more and more complex 
equipment will take EHM into account in the design stage in the near future. At present, the existed 
researches are mainly focused on EHM architecture [1-2], PHM-related algorithms and models 
[3-5], few researches are given to information sensing and test of PHM. However, information 
sensing and test are premise and foundation of EHM [6-7]. Some applications and studies also show 
that PHM ability are more dependent on sensor information rather than on adopted models or 
algorithms [8], and the optimized test types, locations and numbers can enhance diagnostics, 
prognostics and health evaluation ability greatly [8].   

Test optimization selection problem should be considered in the early design stage of equipment 
and be carried out concurrently with functional designing of weapon equipment. Design for 
Testability (DFT) embodies this ideal completely. Testability is a design characteristic which allows 
the status (operable, inoperable, or degraded) of an item to be determined and the isolation of faults 
within the item to be performed in a timely manner, Test Selection and Optimization (TSO) is one 
of the important contents in DFT. 

Traditionally, the tests are primarily selected based on fault detection and isolation requirements 
rather than on EHM especially fault prognosis and health evaluation needs [9]. Against the 
backdrop, the paper mainly solve to problems: 1) how to describe the requirements of EHM for test 
quantitatively; 2) how to select the optimal tests for EHM. 

TSO Mode for EHM 

Fault diagnostics and prognostics are the key technologies to realize EHM, TSO should 
guarantee fault mode space to be fully detectable, isolatable and predictable. Based on the 
recognition, Universe Fault Detectable Rate (UFDR), Universe Fault Isolable Rate (UFIR), and 
Universe Fault Predictable Rate (UFPR) are proposed to describe the testability level for EHM. 

Definition 1: UFDR is generally defined as, during the stated time span, the ratio of the number 
of faults detected correctly by sensors to the total number of equipment system faults. 

Definition 2: UFIR is generally defined as, during the stated time span, the ratio of the number of 
faults isolated correctly to no more than the stated replaceable units by sensors to the number of the 
detected faults during the same time span. 
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Definition 3: Possible Predictable Fault (PPF) is a progressive key fault or key components’ fault, 
denoted by FPP. 

Definition 4: Predictable Fault (PF) is a PPF of which the early state is detectable, denoted by 
FP. 

Definition 4 describes whether a fault is predictable through the detectability of early state of the 
fault. Generally speaking, the early state detectability of a test depends on the main factors as 
follows: 

(1) Signal to noise ratio (SNR): a high SNR implies fault detection uncertainty is small, while a 
low SNR implies that it is hard for the sensor to detect the fault.  

(2) Timeliness (TIMN) is the ratio of the time span between the initiation of a fault (potential 
failure) and the detection of the fault by the sensor (time to detection, TTD) to the duration between 
the initiation of the fault and the time when the failure occurs (TTF). 

(3) Sensitivity (SFDS) is the ratio of a sensor variation of per unit sensor resolution to a fault 
variation of per unit fault resolution. 

Based on the three factors above, Test Fault Early State Detectability (TFESD) can be 
formulated by [8]: 
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Where TFESDij is the early state detectability of test tj for fault fi, SNRj is the SNR of tj, g (=1) and 
h (=0.5) are the shape parameters, TIMNij is the timeless of tj for fi, a (=0.5) is shape parameter, 
SENSij is the sensitivity of tj for fi, b (=10) and c (=0.5) are shape parameters. 

Definition 5: UFPR is defined as, during the stated time span, the ratio of the number of PF 
determined correctly by sensors to the total number of PPF of equipment system. 

Given the fault set is F={f1,f2,…,fm}, and the corresponding failure rate vector is λ=[λ1, λ2 ,…,λm]. 
The complete test set used for selection is T={t1,t2,…,tn}, and the corresponding sensor failure rate 
vector is FR=[r1,r2,…,rn]. A matrix B=[bij]m×n is used to denote fault-sensor dependencies. The rows 
of B correspond to faults, and the columns correspond to sensors. Element bij is a two-tuple, bij 

=(u,v). And we suppose that if a sensor can detect the early state of a fault, it also means the sensor 
can track the fault evolution process. Then, if sensor tj can detect fault fi and its early state, then bij 
=(1,1). If sensor tj can detect fault fi but can not detect its early state, bij=(1,0). If sensor tj can’t 
detect fault fi nor its early state, then bij=(0,0), (bij =0 for short). Generally, if a sensor can detect 
early state of a fault, it also means that the sensor can detect the fault, so the case bij =(0,1) will not 
exist. 

∪Given  denotes Boolean variable OR operation. And ⊕ denotes set XOR operation, when the 
two set are different, the operation result is true. bij(k) denotes the k-th item of the two-tuple 
bij=(u,v), k=1,2. Tfi and Tfj denote the sensor sets which can detect fault fi and fault fj respectively, 
i.e., Tfi={tj|bij(1)=1, tj}, Tfi is also called fault features of fault fi. FPP denotes system PPFs. Given the 
ambiguity group size is L, then, the detectable faults set FD, isolable faults set FI and predictable 
faults set FP are formulated respectively by: 
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According to Definitions 1, 2 and 5: 
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TSO model can be formulated by (4), which takes test cost as optimization objective, UFDR, 
UFIR and UFPR as constraint conditions. 
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Where *UFDR , *UFIR  and *UFPR  are testability requirements that equipment system will satisfy. 
Test Optimization Selection based on Generic Algorithm (GA)： 
Step1: Parameter initialization, including population size, PopSize , generic crossover and 

mutation probability, cp , mp , max iterative number, maxN . The initialization population, 
( )ij N nPop x ´= , is randomly generated, where n denotes the number of sensors used for selection. 

When jt  is selected, 1ijx = , otherwise, 0ijx = . 

Step2: defining fitness function: 
* * *
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Where 0C , 1C  , 2C  and 3C are constant. 
Calculating individual fitness and justifying whether the iterative number satisfy the max 

iterative number. If true, outputting the optimal individual and the corresponding optimal solution, 
end; otherwise, going to step3.  

Step3: Selecting individuals using roulette wheel selection method based on individual fitness, 
and executing crossover operation with probability cp , hence producing population 'Pop . 

Step4: Executing mutation operation with probability mp on the individuals in population 'Pop , 
hence producing population ''Pop , return to step 2. 

Application analysis 

Diesel engine is a core system of some ship, and its operation state will have great impact on the 
mission success. In the design stage, the fault mode space of diesel engine should be sufficient 
observable in order to realize fault diagnostics, fault prognostics and health state evaluation in a 
quick, accurate and economic way. TBD234 diesel engine is of 9 subsystems, 44 modules, 100 
faults and 76 tests [10]. Multi signal flow graph and TEAMS [11] are used to model the engine, 
shown in Figure 1. Further, the two-dimensional fault-test dependency matrix which is of 100×76 
can be obtained from the model. Suppose that each test cost is 1, SNR=10dB, RESO=1. 

 
Fig.1. TBD234 diesel engine fault-test dependency model 

According to EHM requirements of the TBD234, the required testability indices are: UFDR is 
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not less than 0.95, UFIR is not less than 0.90 and UFPR is not less than 1 GA parameters are set as: 
80PopSize = , 0.8cp =  , 0.02mp =  , max 100N =  , 0 10C = , 1 2 3 0.5C C C= = = .  

The optimization tests are in Table 1, accordingly, UFDR=97.25%, UFIR=92.71%, UFPR=100%, 
test cost=32. 

Table 1 Test selection results for TBM234 EHM 
Fuel cleaner obstruction 
inspection 

supercharger speed test Fuel pressure Water pipe inspection 

Engine oil cleaner obstruction 
inspection 

Supercharger oil seal inspection Engine oil pressure Liner water seal 
detection 

governor buffer spring 
inspection 

Incubator inspection Power detection Piston cylinder 
jamming inspection 

fuel injection pump plunger 
spring inspection 

Cool water temperature inspection exhaust temperature Oil analysis in 
governor 

inlet pressure test fuel supply advance angle 
inspection 

connecting rod 
mechanism  

heat exchanger pipe 
obstruction detection 

cooling pipe obstruction 
inspection 

Start battery voltage Fuel quality detection Oil analysis in 
governor 

Inlet temperature test Engine oil impurity detection pressure regulator valve 
inspection 

Oil cooler fracture 
detection 

Starting gear mesh Starting switch test Rotation rate inspection speed governor buffer 
gear detection 

Conclusion 

EHM is of great significance to improve safety and availability of complex equipment, and good 
DFT can improve EHM capability. Based on the requirements of EHM for testability, the paper 
mainly presents TSO problem for EHM. The proposed model and method add fault predictable 
index into the existing fault detectable and fault isolatable indices, which enable the selected tests to 
satisfy the requirements of fault diagnostics and fault prognostics. Due to the NP-hard problem of 
the model, GA is introduced to solve the problem. At last, an equipment application validates the 
proposed method. 
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