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Abstract. This work is devoted to design the stabilizing state feedback controller for stability of the
networked control systems. An improved stability criterion for networked control systems is
proposed in the derivative of Lyapunov functions based on the relationship between the
networked-induced delays and their bound. The stabilizing state feedback controller is applied to
generate next control information for each subsystem using delayed sensing data in free-weighting
LMI formulations. Moreover the design of controller of networked control systems focuses on the
network-induced delays which may deteriorate the stability performance of networked control
systems and even destabilize the real-time control of closed-loop systems. Simulation example shows
the interest of the proposed approach.

1 Introduction

Although networked control systems(NCSs) have several advantages such as low installation cost,
easy maintenance and so on. The use of communication networks makes it necessary to deal with
network-induced delays. These delays may be unknown and time-varying, and may deteriorate the
closed-loop systems[1-2].

As for network-induced delays, they have been deal with by the control theory community in most
research work. The performance and stability of control scheme strongly rely on the respect of the
specified sampling rates and network-induced delays. Recently, the delay-dependent stabilizing
method on the MADB has attracted much attention for the stability of NCSs with network-induced
delays[3]. A free-weighting matrix approach[4] is reported to cover the results using Moon el al.’s
inequality and the descriptor system approach[5]. As for NCSs, the delays are less than the sampling
period for continuous-time systems based on sampling-rate method. Some methods to calculate the
MADB for NCSs using Moon el al.’s inequality for both discrete-time plants are proposed in[6].

The stability analysis and controller design are dealt with in the presence of the network-induced
delays. The object is to keep stability and good performance for NCSs in the presence of timing
uncertainties as communication delays. Thus, it can be useful to consider more dynamic solutions.

2 Design of NCSs Model and Stability Analysis

We are interested here in real-time control of systems with communication delays (see Fig.1).
There are mainly two sources of delays from the network-induced delays in an NCS: device delays and
transmission delays. The computing delays include the time delay at the plant node (P) sou and the
controller node (C) des . The transmission delays include the time delay from sensor node(S) to
controller node(C) sc and from controller node (C) to actuator node (A) ca . The total time delay can
be expressed as follows

sou des sc ca        (1)
2.1 NCSs model

In this section, we will review and improve some results on the modeling of NCSs. We need the
following assumptions:

Assumption 1. In an NCS, the total time delay  is less than one sampling periodh .
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Assumption 2. In an NCS, the NCS uses the way of single-packet transmission. The data packet
loss and noise effect on the NCS are not considered.

Assumption 3. In an NCS, the sensor is assumed to be time-driven, whereas the controller and
actuator are event-driven, and controller is time-invariant.

Shared network

subsystem 1
A P

C S

subsystem n
A P

C S

Figure 1. NCSs control structure
The discrete system equations can be written as:

( 1) ( ) ( )x k A x k Bu k     (2)

( ) 0x k  , ( 0k   ) (3)

where, state vector ( ) nx k  ; control input vector ( ) mu k  ; A , A and B are real constant
matrices with appropriate dimensions.

The total time delay satisfies:

1 2    (4)

where, 1 and 2 are minimum and maximum time delay respectively and less than one sampling
time.
2.2 Controller Design

The memoryless state feedback controller for the NCSs is designed.
( ) ( )u k Kx k (5)

where, ( ) 0u k  , ( ,0)k   .
Lemma 4. (Schur complements) Given constant matrices M, P and Q, where

TP P and 0TQ Q  , then, 1 0TP MQ M  ,if only if 0T

P M
QM

 
 


, or 0

TQ M
M P




 
.

Theorem 5. Given 0i   1,2i  , if there exist constant matrices P , Q , Z , X , 1N , 2N ,

where 0TP P  , 0TQ Q  , 0TZ Z  , 1211

22

0
*

XX
X

X


 
 

, 1N and 2N have appropriate

dimensions, hold,
11 12

22

( )

* 0
* *

T

T

A I H

A H
H



   
 

    
 
 

(6)

11 12 1

22 2* 0
* *

X X N
X X N

Z

 
   
 
 

 (7)

then, the system(2) with the time-delay constraint(4) is stable when ( ) 0u k  .

Figure 1. Networked Control Systems Structure
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where, 11 2 1 1 1 2 11( 1) ( ) ( )T TQ P A I A I P N N X             , 2H P Z  , 12 2 1 2 22
TPA N N X      ,

22 2 2 2 22
TQ N N X      .

Proof. Given ( ) ( 1) ( )y k x k x k   ,then ( 1) ( ) ( )x k x k y k   .So,

1

( ) ( ) ( ) 0
n

k

x k x k y l


    (8)

Choose Lyapunov functional candidates as: 1 2 3( ) ( ) ( ) ( )V k V k V k V k   ,

1( ) ( ) ( )TV k x k Px k ,  
2

0 1

2
1 1

( ) ( ) ( )
k

T

l k
V k y l Zy l

  



    

   ,  
1

2

1 1

3
1 1

( ) ( ) ( )
k

T

l k
V k x l Qx l



  

  

    

   ,

where , 0TP P  , 0TQ Q  and 0TZ Z  .
Let ( ) ( 1) ( )V k V k V k    ,then

1( ) ( 1) ( 1) ( ) ( ) 2 ( ) ( ) ( ) ( )T T T TV k x k Px k x k Px k x k Py k y k Py k      

   
1 1

2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
k k

T T T T

l k l k
V k y k Zy k y l Zy l y k Zy k y l Zy l

 

 
 

   

     

 
1

2

3 2 1 2 1( ) ( 1) ( ) ( ) ( ) ( ) ( 1) ( ) ( ) ( ) ( )
k

T T T T

l k

V k x k Qx k x l Qx l x k Qx k x k Qx k




     


 

          
The differential function of Lyapunov function ( )V k is written as follows:

 
1

2 2 1( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1) ( ) ( )

( ) ( )

k
T T T T T

l k
T

V k x k Py k y k Py k y k Zy k y l Zy l x k Qx k

x k Qx k


  

 



 

       

  



Equation (8) and matrices 1( 1, 2)N i  are used, the written equation is as follows:
1

1 22 ( ) ( ) ( ) ( ) ( ) 0
k

T T

l k

x k N x k N x k x k y l


 


 

            
 (9)

On the other hand, as for any matrix 1211

22

0
*

XX
X

X


 
 

, the following equation holds:

       
2

1 1 1

1 1 2 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
k k k

T T T T T T T T

l k l k l k
l X l l X l l X l l X l

  

        
  

     

     (10)

where, 1( ) ( ) ( )T Tk x k x k     , add the left sides of equation(9) and equation(10) into ( )V k ,

hence we have  
1

1 1 2 2( ) ( ) ( ) ( ) ( )
k

T T

l k

V k k k k k


   


 

     ,

2 1( , ) ( ) ( )
TT Tk l k y l     , 1211

2212

( )( ) ( )

( )

T

TT T T

A I HAA I H A I
A HAA H A I



 

      
        

.

So, an NCS is stable is only if 0  and 0  . According to Lemma 4, we know that 0  is
equal to 0  .

Theorem 6. Given 0( 1,2)i i   ,if there exist constant matrices L , W , R , Y , 1M , 2M , V , they

satisfy that 0TL L  , 0TW W  , 0TR R  , 1211

22

0
*

YY
Y

Y


 
 

, 1M , 2M andV have appropriate

dimensions. So,
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12 2 1111 12

22 23 2

2

*
0

* * 0
* * *

TLA
L

R



   
  





   
  

(11)

11 12 1

22 2
1

* 0
* *

Y Y M
Y Y M

LR L


 

  

 (12)

then, the system(2)with the time-delay constraint(4) can be controlled and 1K VL ,
11 2 1 1 1 2 22( 1) 2T T T TW AL LA L BV V B M M Y              , 12 2 1 2 12

TA L M M Y     ,

13 ( )T T TL A I V B    , and 22 2 2 2 22
TW M M Y      .

Proof. According to the proof of Theorem 5, the LMI (6) is changed by using Lemma 4.

211 12

22 2

2

( ) ( )
*

0
* * 0
* * *

T

T T

A I P A I Z
A P A Z
L

Z

 







  
        

(13)

then, the NCSs(8) under the control of the memoryless state feedback controller and its state
equation is

( 1) ( ) ( ) ( )x k A BK x k A x k      (14)
As for the system (14), A BK is used to instead of A in the LMI(13), then the LMI(13) is

211 12

222

2

( ) ( )

* 0
* * 0
* * *

T

T T

A BK I P A BK I Z

A P A Z
L

Z

 







     


      

 
 (15)

where, 11 2 1 1 1 2 11( 1) ( ) ( )T TQ P A BK I A BK I P N N X                , 12 2 2 2 12
TPA N N X      ,

22 2 2 2 22
TQ N N X      .

So, the method of proof for Theorem 5 is used, then
1 1 1 1 1 1 1 1{ , , , } { , , , } 0diag P P P Z diag P P P Z         (16)

1 1 1 1 1 1{ , , } { , , } 0diag P P P X diag P P P        (17)
where, 1 1 1 1{ , } { , }Y diag P P X diag P P      , 1L P , 1 1W P QP  , 1R Z  , 1 1

1 1M P N P  ,
1 1

2 2M P N P  , 1V KP .
The final conclusion is drawn by calculating the LMIs(16),(17).

3 Simulation
In this section, one example is given to show effectiveness of the proposed method. It is solved by

the LMIs from Theorem 5 and Theorem 6.
According to the system state equation (2), when ( ) 0u k  , the system matrices are denoted as

follows:

0.8 0
0 0.97

A  
  
 

,
0.1 0
0.1 0.1

A
 

    
where, 1 2  , is constant.
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If the methods in [7],[8] is used, the maximum values of 2 are 12 and 16 respectively. however, its
values is 16 used the method proposed in this paper.

As for network-induced delay 1 , the methods in [7],[8] and in this paper are used respectively. The
results as follows

Table 1. Upper Bound of 

1 1 3 5 7 9 11

Fridman&Sharked
8 8 8 8 8 8

Theorem5,6 10 10 10 10 11 12

From TABLE 1, we know that the results uses the method in this paper is less conservative than
that uses the method of Fridman and Sharked

4 Conclusions

The stability of NCSs is analysed through an improved stability criteria that proposed in the
derivative of Lyapunov function and consider the relationship between the network-induced delays
which are time-varying. A stabilizing state feedback controller is applied in each subsystem of NCSs
in a free-weighting LMIs formulation. Simulation example shows the effectiveness of the method.
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