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Abstract. The dynamical phenomena of complex networks are not easy to model and to characterize
by current methods of mathematics. Newman, Barabási and Watts pointed out the direction of re-
searching complex networks by graph theory, which was successfully applied in current investigation
of complex networks, and Newman’s network-based methods have been applied to a variety of field-
s. Some well-known and new methods of mathematics are provided in this article, associated with
construction and problems on scale-free models from real networks.

Introduction

The emerging field of “network science” is an increasingly popular field. What in this article will go
on according to the suggestion proposed by Newman, Barabási and Watts [3]: Pure graph theory is
elegant and deep, but it is not especially relevant to networks arising in the real world. Applied graph
theory, as its name suggests, is more concerned with real-world network problems, but its approach
is oriented toward design and engineering. Doubtless, it is one of important directions and guidance
of researching networks by means of graph theory. However, Alderson [12] pointed: Recent efforts to
develop a universal view of complex networks have created both excitement and confusion about the
way in which knowledge of network structure can be used to understand, control, or design system
behavior. Let P (k) be the probability distribution of a vertex joined with k vertices in N(t).

As known, Barabási and Albert [1] have shown P (k) = Pr(x = k) ∝ k−α to be one of standard
properties of a complex scale-free network, where α falls in the range 2 < α < 3. This criterion
has been shown in many real networks that have scale-free behavior. These models have growth and
preferential attachment, two important criterions for having scale-free structure. But there is some
exception, for example, Mitzenmacher [19] shown that the monkeys typing randomly would produce
a power law associated with word frequency requires neither preferential attachment nor optimization.

Newman’s network-based methods have been applied to a variety of fields, including psychology,
sociology, economics and biology. With collaborators, Newman developed statistical methods for
analyzing power-law distributions and applied them to the study of a wide range of systems, in various
cases either confirming or denying the existence of previously claimed power-law behaviors (Ref.
https://en.wikipedia.org/wiki/Mark-Newman). Using existing methods to depict network models is
not a easy thing, even a horrible job. It is very important for us to focus on mathematical methods that
were used or are using or will be born or will be discovered in researching networks. Some results on
mathematical methods of researching scale-free networks will be shown in this article.

Mathematical methods and models

Networks are connected in the following argument if no special declaration. The notations nv(t) and
ne(t) are the numbers of vertices and edges of a network N(t). Let d(u, v) stand for the distance
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between two vertices u, v of a network model N(t), and let deg(x) be the degree of a vertex x in
N(t). Also, deg(x) is the number of neighbors of the vertex x. For each vertex u of V (t), where V (t)
is the vertex set of the model N(t), the set X(u, t, β) = {v : d(u, v) = β, v ∈ V (t)} is called the
β-neighbor set of the vertex u for a fixed integer β ≥ 1. We define a β-distance set Yu(t, β, k′) over
X(u, t, β) by Yu(t, β, k′) = {v : deg(v) = k′, v ∈ X(u, t, β)} = {v : d(u, v) = β, deg(v) = k′}.

Probability P (k). Barabási et al. [18] introduced that there are the continuum theory, the master
equation and the rate equation for estimating the degree distribution P (k). Clauset et al. [10] have
shown that a continuous power-law distribution can be described by a probability density

P (k) =
P (k ≤ X ≤ k + dk)

dk
= Ck−γ, (1)

whereX is the observed value and C = (γ−1)x−γmin is a normalization constant, since the distribution
(1) diverges at zero, so there must be a lower bound xmin > 0. In the discrete case, C−1 = ζ(γ, xmin)
from

∑∞
k=xmin

Ck−γ = 1, where Hurwitz zeta function ζ(γ, xmin) =
∑∞

n=0(n+ xmin)
−γ .

Cumulative distributions. C1. Cumulative degree distribution. Dorogovtsev et al. [6], in or-
der to obtain exact (analytical) and precise (numerical) answers for main structural and topological
characteristics of scale-free graphs, defined the cumulative degree distribution as

Pcum(k) =
∑
k′≥k

N(k′, t)

nv(t)
∼ k1−γ, (2)

where N(k′, t) represents the number of vertices which the degree greater than k at time step t, and
2 < γ = 1 + ln 3

ln 2
< 3. Pcum(k) is useful in studying scale-free models (Ref. [5, 8]).

C2. Edge-cumulative distribution. The authors of the paper [7] motivated from (2) define the
edge-cumulative distribution by Pecum(k) =

∑
k′≥k

E(k′,t)
ne(t)

∼ k1−δ, where E(k′, t) is the number
of edges joined with vertices of degree k′ greater than k at time step t. Wang et al. [9] conjecture
that both Pcum(k) and Pecum(k) are equivalent to each other after verifying their conjecture for some
deterministic models. We define the edge-cumulative distribution P d

ecum(k) =
∑

k′≥k
k′N(k′,t)
ne(t)

∼ k1−ε.
C3. Mixed cumulative distributions. Wang et al., in [9], have conjectured that both Pcum(k) and

Pecum(k) are mutually equivalent in every deterministic scale-free network model. Again, Wang et al.
define three mixed cumulative distributions with 0 < τ < t as

P 1
cum(k) =

∑
i≤τ

ne(i) · nv(i)
ne(t) · nv(t)

, P 2
cum(k) =

∑
i≤τ

ne(i)− nv(i)
ne(t)− nv(t)

, P 3
cum(k) =

∑
i≤τ

√
ne(i) · nv(i)√
ne(t) · nv(t)

. (3)

and verified them by Comellas’ recursive graphs, Sierpinski and Apollonian network models.
C4. Another group of mixed distributions.

P×cum(k) =
∑
k′≥k

E(k′, t) ·N(k′, t)

ne(t) · nv(t)
, P−cum(k) =

∑
k′≥k

∣∣∣∣E(k′, t)−N(k′, t)

ne(t)− nv(t)

∣∣∣∣ , (4)

P
√
×

cum(k) =
∑
k′≥k

√
E(k′, t) ·N(k′, t)

ne(t) · nv(t)
, P ∗cum(k) =

∑
k′≥k

[
E(k′, t)−N(k′, t)

ne(t)− nv(t)

]2
. (5)

Unfortunately, we do not know the physical meanings of the above four cumulative distributions in
real networks, and do not estimate them in deterministic and random models.

C5. Complementary cumulative distribution. Clauset et al. [10] suggested to consider also the

complementary cumulative distribution function P c
cum(x) = P c

cum(x) =
∫∞
x
P (k)dk =

(
x
xmin

)−α+1

of a power-law distributed variable X with P c
cum(xmin) = 1 and P (k) = Pr(X = k) = Ck−α with
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C = (α− 1)xα−1min , and which for both continuous and discrete cases is defined as P c
cum(x) = Pr(X ≥

x). Thereby, we have ∂P c
cum(k)
∂k

= − ∂
∂t

∫ x
∞ P (k)dk = −P (k). In many literature we can see

P (k) = −∂P
c
cum(k)

∂k
= −∂Pr(X ≥ x)

∂t
=
∂(1− Pr(X ≥ x))

∂t
=
∂Pr(X < x)

∂t
(6)

Wang et al. [9] estimated P (k) ∼ ∂Pcum(k)
∂k

in discrete cases of deterministic scale-free network model-
s. In [4], Newman shows the the cumulative distribution function P (k) =

∑∞
k′=k Pr(k′), where Pr(k′)

is the probability that the degree is greater than or equal to k. We can compute P (ki(t) < k) = 1 −
P (ki(t) ≥ k) = 1−

∫ +∞
k

P (x)dx = 1− Pcum(k), and furthermore P (k) = ∂P (ki(t)<k)
∂k

= −∂Pcum(k)
∂k

,
we then, by (1), can derive Pcum(k) = −

∫ k
0
P (w)dw = −C

∫ k
0
w−γdw = C

γ−1k
1−γ .

C6. The d-cumulative degree distribution. Su (Jing Su, Bing Yao and Ming Yao. Some Charac-
teristics of A Class of Edge-iteration Network Model. submitted) define P d

cum(k) =
1

nd(t)

∑τ
i=0 nd(i),

where nd(i) is the number of vertices of a fixed degree d in N(i) at time step i, and 0 < τ < t.
C7. Cumulative distribution of the clustering coefficient. Let C(u) be the clustering coefficient

of a vertex u inN(t). ThenN(t) has its own average clustering coefficient as 〈c〉 = 1
nv(t)

∑
u∈V (t)C(u).

Barabási and Dorogovtsev et al., in [18] and [6], defined independently a deterministic model to
be hierarchical if the clustering coefficient of a vertex u having degree k holds the scaling law
C(k) = 2|E(u)|

k(k−1) ∝
1
k

true, where |E(u)| is the number of edges between the k neighbors of u.
Dorogovtsev et al. [6] formulated the cumulative distribution of the clustering coefficient of N(t)
as Wcum(ξ) =

1
nv(t)

∑
ξ′≤ξmc(ξ

′, t) ∝ ξγ−1 with γ = 1 + ln 3/ ln 2. where ξ and ξ′ are points of the
discrete spectrum, and mc(ξ

′, t) is the number of vertices with clustering coefficient ξ′. Dorogovtsev
et al. claimed that their results in [6] can be reasonably applied to random growing networks.

Beta-distance parameters. B1. Beta-distance average degree

〈k〉β =
1

nv(t)

∑
u∈V (t)

〈k〉(u,β) =
1

nv(t)

∑
u∈V (t)

∑
x∈X(u,t,β)

deg(x)
|X(u, t, β)|

. (7)

with 〈k〉(u,β) = 1
|X(u,t,β)|

∑
x∈X(u,t,β) deg(x). As β = 1, we have 〈k〉1 = 〈k〉 = 2ne(t)/nv(t).

B2. Beta-distance cumulative degree distributions. The universal and local measurements are
defined as

P β
cum(k, u)u =

1

nv(t)

∑
k′>k

|Yu(t, β, k′)|, P β
cum(k, u)l =

1

|X(u, t, β)|
∑
k′>k

|Yu(t, β, k′)|. (8)

Velocities of dynamic network models. We can compute ∂|V (t)|
∂t

and ∂|E(t)|
∂t

for the vertex set V (t)

and the edge set E(t) of a network model N(t). Thereby, we define Vel(N(t)) = ∂|V (t)|
∂t
· ∂|E(t)|

∂t
as the

velocity of N(t), since we regard that t is continuous. Clearly, N(t) is growing when Vel(N(t)) >
0, otherwise N(t) is decaying as Vel(N(t)) < 0. Also, we can compare network models by their
velocities. We have found a phenomenon in the following deterministic models: For the recursive
graph = K(q, t) discussed in [5], Vel(K(q, t)) = [(q + 1)t ln(q + 1)]2/q(q + 1). For the Sierpinski
network model NS(t) investigated in [8], Vel(NS(t)) = 27(6t ln 6)2/25. For the High dimensional
Apollonian network modelNA(t) shown in [11], Vel(NA(t)) = [(d+1)t ln(d+1)]2/d(d+1). Thereby,
we guess: Every deterministic scale-free network model N(t) has a constant velocity, or has that
Vel(N(t)) ∝ A · Bt with constants A,B 6= 0. On the other hands, we may consider V −el (N(t)) =
∂|E(t)|
∂|V (t)| =

∂|E(t)|
∂t

/∂|V (t)|
∂t

, as V −el (K(q, t)) = 1, as V −el (NS(t)) = 3, as V −el (NA(t)) = (d + 1)−1. Each
one of three examples is almost equal to a constant, which shows that three models are sparse.

Construction of Models. No doubtless, one need more models to understand and control real
networks in the world. Current models in literature can be partitioned into random models and de-
terministic models. Graph theory is one of useful and powerful tools applied successfully in network
science. When constructing models having some properties of Prop for understanding or simulating
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real networks, we use two generic mechanisms of growth and preferential attachment formulated
by Barabási and Albert [1], where Prop = {SF,SW,HCC, HT,HM, SS} is a set with SF=scale-free
character, SW=small-wold structure, HCC=high clustering coefficient, HT=hierarchical topology,
HM=high modularity, SS=self-similarity. As known, some models exhibit two or more properties
of Prop. Some of techniques for constructing network models are listed in the following: M1. Some
models can be made in the following ways: M1.1. The definition of scale-free graphs was introduced
by Li et al. [2], so it needs more investigation of scale-free graphs, which is a new branch of graph
theory. M1.2. We can define the so-called power law (scale-free) graphs as: A power law graph G(t)
for t ≥ 0 holds: (i) |G(t)| = 1 + |G(t − 1)|; (ii) a new vertex u is added to G(t − 1) and joins
with k vertices of G(t − 1). M2. A growing network model N(t) can be obtained by: M2.1. Doing
a unique operation O to N(t − 1) having smaller numbers of vertices and edges such that each of
numbers of vertices and edges of N(t) is greater than that of N(t − 1). Bound growing network
models were introduced in [7], most of them are nested. Genio et al. [13] have proven: All scale-free
networks are sparse. We, by the above ways, have shown: For any real number M > 0, there exist a
scale-free graph N(t) and a number β ≥ M such that |E(t)| ∝ β · nv(t). M2.2. Doing two opera-
tions O1 and O2 to N(t− 1) such that each of numbers of vertices and edges of N(t) is greater than
that of N(t − 1). But, it may not have N(t − 1) ⊂ N(t). M3. No growth of vertices and edges by
rewiring edges under probability p, or by some mechanisms of preferential attachments, or by adding
a new vertex and then removing an old vertex simultaneously. Some such non-growing models are:
the famous BW Models proposed first by Watts and Strogatz [15]; Yang-Chen-Chen Models [17];
Xie-Zhou-Wang Models [16]; Ghoshal-Newman Models [14]. M4. We are thinking of the following
topics of constructing network models: M4.1. For each desired θ with respect to 2 < θ < 3, making
a scale-free model N(t) such that a vertex of N(t) was joined with k vertices under the probability
P (k) ∝ k−θ. M4.2. For each desired η falling in the range 2 < η < 3, making a scale-free mod-
el N(t) having its own cumulative degree distribution Pcum(k) ∝ k1−η. M4.3. For each desired µ
holding 2 < µ < 3, making a scale-free model N(t) having its own edge cumulative distribution
Pecum(k) ∝ k1−µ. M5. Complementary models of models are not mentioned more in literature in
our memory. We consider such models for their structures and parameters in general. M6. No more
network directed models appeared in literature, although WWW can be described by digraphs. M7.
It is useful to apply hypergraph theory in construction of models, especially, society networks and
WeChat etc.

Summary

Our results are focusing on the following problems: 1. The sizes of real networks around us are too
big in general, and they are complex and random for formulating models. 2. Lack of recognized and
fixed standards, precise definitions of objects of networks. 3. Need many experts coming from two or
more subjects in cooperative research as we are facing various disciplines, large amount of literature.
4. Lack of appropriate approaches in network science, since current methods are directly taken from
existing mathematics. Moreover, the new mathematical methods produced from network research are
far more from to be an effective theoretical system. 5. Technology and equipments are updated quickly
every day. New technology and new equipments change greatly structures of real networks, even set
up new networks. The time period of producing new technology and new equipments is shorter than
that of researching. 6. The gap between network development and theoretical study is too large. It is
very difficult to make synchronous development of investigation and real network technology.
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