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Abstract. Current analysis show that Map-Reduce cannot directly support spatial join operations with
secondary reduction features efficiently. This paper proposes a Map-Reduce based parallel strategy--
-Map-Combine-Reduce (MCR)---to treat the join aggregation of large-scale spatial data. MCR takes
advantage of combine stage in Map-Reduce model to integrate the partial aggregation results dis-
tributed at various maperp and reducers. Filter optimization was proposed to facilitate single-allocation
issues of spatial objects in division of parallel tasks to further improve the efficiency of join aggrega-
tion querying. Experimental results have proven its efficiency, effectiveness, and simplification during
processing spatial join aggregation query.

1 Introduction

Spatial join aggregation (SJA) query is a common but important operation. Based on spatial attribute
information, SJA returns aggregation information (based on the sum, mean, maximum and minimum
value) in two or more spatial datasets. The SJA query of statistic information on return joining is
more popular with customers sometimes than pure spatial joining. For example, in traffic monitor-
ing systems, the space including join query results (looking for vehicles in traffic areas) are usually
meaningless because of the frequent movement of vehicles, but the records of number of vehicles in
specific traffic areas are more helpful.

SJA queries take more time and space cost than non-spatial join aggregation queries and requires
expensive join and aggregate operations on massive spatial data [1]. The classic algorithms [2, 3] stud-
ied so far are performed in standalone machine environments, and it can be used to solve aggregation
query of small-scale spatial datasets. However, there is a recent explosion in the amounts of spatial
data. For example, satellite data archives in China Center for Resource Satellite Data and Application
exceeded 5PB and is still growing; taxi trajectory data collected from Changsha city, a typical medium
size city in south China, is about 20 million records per day [4]. This brought up severe challenges to
traditional strategy to process SJA queries in standalone machine environments.

Parallel computation on clusters is an effective approach to process large-scale spatial data. Map-
Reduce (MR) [5] is a distributed programming framework as well as a programming model which
has been popularized by Google for processing a massive volume of data in parallel with many cheap
configured computing nodes. Scholars have started to study spatial query techniques on MR frame-
work [6], including spatial join [7], spatial kNN [8] and polygonal overlay processing [9]. However,
SJA query refers to multiple heterogeneous data sources, and it needs secondary reduction process due
to the multi-distribution features in the division of parallel join tasks. However, the MR model is appli-
cable to single reduction processing, it does not directly support the join aggregation of multi-source
heterogeneous data or secondary reduction processing in SJA.

In this paper, we propose an extended framework named MCR by taking the advantage of combine
stage in traditional Map-Reduce model. The MCR model is used to enhance the ability to support
multi-stage reduction and produces a parallel computing model to solve the data processing issues
that require multi-source heterogeneous inputs and secondary reduction. Subsequently, we propose a
multi-stage spatial join aggregation algorithm and filter optimization strategy with consideration of
the distribution features of spatial object in parallel SJA processing. Experimental results indicate that
the improved parallel computing framework is better than the original algorithms.
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2 MCR model

The secondary reduction for computation assignment needs to add an additional MR process, which
results in unnecessary serial communication costs between data transmission and MR. The Map-
Combine-Reduce (MCR) model extends the Map-Reduce model and adds two combine processes to
support secondary reduction. It also provides a data division mode to process heterogeneous joining.
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Fig. 1: MCR model

Fig. 1 describes this process as represented as follows:

« map:{(k,,v,);} — { k. vp) ,}
 1* combine: {[(kp, v)]; l—>{ P UI,UQ’---’U[))}
* reduce: {(k,, vy } { ke, ve)] }

2md combine:{[(kc, Uc)]j} - {[(kq, U)]l}

where i, j and [ represent different data sources, respectively. Let k be the key, and v the value. In the
MCR model, the map function firstly transfer input key/value pair (k,, v,) to a series of intermediate
results in the form of key/value pair [(k,,v;)] in each data source. The first combine stage exerts
homogenization processing (HP) according to the data source, and groups values from all pairs with
k,. Reduced function gathers all value set related to k, (v, may come from different data sources)
in 1*" combine stage, and executes spatial join aggregation operations on ([v,]) to generate a series
of key/value pair result sets [(k.,v.)];. After the reduce stage of the MR framework, the 2/ combine
function gathers k, related value sets and generates final key/value pair result sets [(k,,v)]; in data
source /. Unlike the Map-Reduce framework, the new model supports and processes multiple sources,
and uses two combine stages to support secondary reduction processing. The new model is a four-stage
(map-combine-reduce-combine) independent parallel and serial synchronization of the computational
model. The internal asynchronous parallel assignment during the combine stage also operates under
the independent parallel ideal status.
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3 Spatial Join Aggregation with MCR

According to the MCR model, parallel spatial join aggregation query is divided into four serial parallel
synchronous stages: 1) map stage in which the whole task is decomposed into parallel sub-tasks based
on spatial distribution of objects; 2) first combine stage in which parallel join sub-tasks were generated;
3) reduce stage in which spatial join aggregation is processed in parallel in each sub-task; 4) second
combine stage in which the final result is obtained with the integration of the results of each reducer.

3.1 Map stage for SJA In map stage, we decomposed the join task into several sub-tasks. Suppose
the input datasets are R and S, the join region is D. We first divide D into N non-intersected tiles d;;
each d; will be assigned to a processing task. Objects in R and S are distributed to each d; according
to their MBR. Fig. 2 shows an example, where D is divided into 4 X 4 tiles and tile d, contains {s1, 1}
which will be process in one sub-task.

Fig. 2: Devision of join region

Thus we define the map function as follows in Algorithm 1.

Algorithm 1: Map function of SJA
Input : (oid: spatial object id, geo: geometry of the object)
Output: (di, oid)

1 MBR = GetMBRfromGeometry(geo);

2 outputlist = null;

sfori=0toN—-1do

4 if d; intersect MBR then

5 | outputlist.append(d;, oid);

6

7

8

end
end
return outputlist

Surely we may improve the algorithm if there is a spatial index for D.

3.2 The first combine stage for SJA

In the first combine stage, we group the result of the map stage into N tuples by the key d; in each
output item of map function. The N tuples are correspond to N sub-tasks. Suppose we have P reducers
(P << N), as in the actual scenario, we need to divide N sub-tasks into P groups to distribute them on
those reducers and to ensure the balance of loads. Considering spatial proximity effect, we take a set
of space filling curves to mark each sub-task, and define the combine algorithm as in Algorithm 2.

where R; represents oid set from R in d; and S ; represents oid set from S in d;. In line 13, the f(d;)
is the space filling curve mapping function. In the following experiments, we used 3 typical space
filling cures which are: CMD curve, Z-curve and Hilbert curve.
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Algorithm 2: First combine function of SJA

Input : M: result of map stage {(d;, oid)}
Output: {(reducerID;, (R;,S,))}
M BR = GetMBRfromGeometry(geo);
initiate groupedlist[i] (i = 0 to N — 1);
for j = 0 to item number of M — 1 do
if d; intersect MBR then
| append (oid) to groupedlist[M(}).d;].R;;
end
else
| append (oid) to groupedlist[M(}).d;].S ;;
end
end
initiate outputlist[i] i = 0to N — 1);
fori=0toN—-1do
outputlist[i].reducerID = f(d;) mod P,
outputlist[i].R; = groupedlist[i].R;;
outputlist[i].S; = groupedlist|i].S ;;
end
return outputlist
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3.3 The second combine stage and its optimization In the second combine stage, we merge
(key, value) pairs of the reduce stage with the same key, and produce the final result as in Algorithm 3.

Algorithm 3: Second combine function of SJA

Input : SJALst:A list of (object,count) pairs from reduce stage
Output: SJAResult:A list of (ob ject,count) pairs with unique object id
1 sort SJALst by object;
2 initiate SJAResult;
3 previousTuple=(nullkey,0);
4 for i = 1 to item number of SJALst do

s | if SJALst[i].object # previousTuple.ob ject then

6 \ append (previousTuple) to SJAResult;

7 | end

8 | else

9 ‘ previousTuple.count = previousTuple.ob ject + S JALst[i].count,
10 | end

n end

12 return SJAResult

3.4 The filtering optimization of the framework We noticed that in the map stage, objects in R
and S are distributed to each d; according to their MBR. Some of the objects was contained in only
one tile, and would be processed only in one sub-task. We called this scenario the single assignment
(SA). While others intersected with multiple tiles and would be processed in multiple sub-tasks. We
called this scenario the multiple assignments (MA). This inspired us to develop a strategy to reduce
the cost of the second combine stage. We added a mark at to object tuples according to scenario SA or
MA during the map stage, and the output of Map function was converted to (d;, oid + at). The Reduce
function was used to determine the key of output result. If at was SA, the Reduce function wrote it
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directly into the result set. Otherwise, it was sent to the Combine stage for processing. As the strategy
filtered SA objects after the reduce stage, we call this strategy the MCREF strategy.

4 Experiments

4.1 Experimental setup

We next present an experimental study of our algorithms. Our Hadoop cluster consisted of one
master node and 32 slave nodes. Each node was equipped with 2 quad-core 2.4G Hz CPUs, 16 GB
RAM, and a 167 GB local disk. Nodes were connected using 10-Gigabit Infiniband network. Datasets
used in the experiments were the road network data of the United States (except Alaska and Hawaii)(R)
with 29,692,784 objects, hydrograph data (H) with 7,066,849 objects, and population census data (C)
with 8,137,053 objects.

The experiments evaluate the algorithm performance varying space division P(T'), node number
N, and division function. In our experiments, P(T) divided the join area into 2* x 2% uniform grids, of
which & ranged from 7 to 10 with 8 by default. the division functions included CMD division, Z-curve
division, and Hilbert division with CMD division by default. N ranged from 4 to 32 with a default
value of 32. The combiner number was set to 8.

We conducted two experiments, the spatial intersection join aggregation and the spatial contain
semi-join aggregation. Both were commonly used join processing in spatial application. With the
experiments, we tested the overall performance of the execution of primary Map-Reduce framework
(MR) , the new parallel computing framework (MCR) and filtration optimization under new parallel
framework (MCRF).

4.2 Evaluation of Spatial Intersection Join Aggregation

Experiments were conducted to evaluate the performance of spatial intersection join aggregate
(SIJA) on dataset R and H.

Fig. 3 shows the variation of SIJA versus k values. Results shows that with the increase of k,
the join area of spatial object became smaller, therefore the performance increased. But instead of
decrease, the execution time of SIJA increased when k > 8. This indicates that when k is excessively
large, the redundancy of spatial objects will increase, and the computation cost also increases during
the reduction stage. As shown in Fig. 3, the performance of the SIJA algorithm based on MCR was
at least 16% better than that based on primary MR. The filtration optimization under MCR resulted
further improved the performance of processing SIJA. The experimental results are consistent with
the theoretical analysis given before. Now that MCRF achieved optimal performance, the algorithm
in the following experiments utilized MCRF.
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Fig. 3: Processing time of three algorithms with different k£ in SIJA

Fig. 4 shows the MCRF performance under various task divisions. Results showed that Hilbert-

k and CMD division performed better than z-k division under the conditions of most k values. This

indicated that the loads of distributed tasks were more balanced under Hilbert-k and CMD divisions.
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Fig. 4: Processing time of division strategies with different k in SIJA
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Fig. 5: Performance of MCREF algorithm with different node number in SIJA

Fig. 5 shows the variations in MCRF versus nodes. As the number of nodes increased, the SIJA
execution time tended to decrease. This was because both the parallelism and processing capacity
of the system increased as the number of nodes increased; but when N > 16, the SIJA execution
time rebounded. This was because the processing capacity in 16 nodes was found to reach 128 cores
of computational capacity. For SIJA under fixed computational strength, the excessive assignment
on its computational tasks was found to contrarily increase its communication costs and depreciate
its performance. Under the situation of fixed N, the performance of MCRF increased as r increased
when the Reducer number met the conditions of r < 8N. This was primarily because each node had 8
cores and could simultaneously execute 8 tasks. When r > 8N , the Reducer task at each node cannot
complete in one cycle, which resulted in the decrease of performance.

5 Summary

The purpose of this paper was to address the deficiency of current Map-Reduce parallel computing
models in processing the join aggregation of multi-source heterogeneous spatial data. By using two
combine stages on the basis of Map-Reduce framework, the system performed better in supporting
secondary reduction. The addition of the combine stages reduced the computational cost in imple-
menting secondary reduction, and provided a simple but highly efficient parallel computing mode for
distribution of spatial join aggregation processing. In the proposed filtering optimization strategy, the
join aggregation results of the SA objects were directly pushed into the Reduce stage. This method
prevented any unnecessary operations in the data communication and combination stages and further
improved the performance of the whole process. Experiments confirmed that, the SJA algorithm un-
der proposed framework was more simple and efficient than the traditional one, which was based on
primary Map-Reduce model.
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