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Abstract. In this paper, a device is developed for detecting external dc magnetic field, which is 
constructed from a piezoelectric unimorph and an energized coil. The working principle of the device 
is based on the coupling of the Ampere force in the energized coil exposure to external magnetic field 
and the piezoelectric effect of the piezoelectric unimorph. Experiments have been conducted to verify 
the feasibility of the device. The device shows a high output voltage of 0.5984V at the dc magnetic 
field of 0.1 mT. The large dc magnetic field response of the proposed structure driven by the Ampere 
force makes this device hopeful in application of dc magnetic field sensors. 

1 Introduction 

Magnetoelectric laminate composites, which consists of magnetostrictive and piezoelectric layers, 
have been widely studied duo to their large response to external magnetic field [1]-[7]. Compared 
with single phase materials, the composites have larger magnetoelectric coefficient. Typically, the 
composites fabricated from giant magnetostrictive materials (e.g., Terfenol-D) and piezoelectric 
materials can attain a strong magnetoelectric response to external magnetic field due to the large 
magnetostriction of Terfenol-D [8], [9]. However, the magnetoelectric effect of the laminate 
composites is mainly concerned with external ac magnetic field, and they are not suited for dc or 
quasi-dc magnetic field [10], [11]. 

This paper presents a dc magnetic field detector to overcome the issue of the magnetoelectric 
laminate composites. The principle of the proposed device is based on the moment effect resulting 
Ampere forces and piezoelectric effect of the piezoelectric unimorph. The experimental results 
validate the presented design. The features of low-cost, simplicity, and large response make the 
proposed device promising in real applications. 

2 Structure and principle 

Fig. 1 shows the schematic diagram of the proposed structure. The device consists of a piezoelectric 
unimorph, a coil, and two fixed blocks. When the coil is energized, an Ampere force is induced on the 
upper block, which is given by 

ILHnF dc0 ,                                                                      (1) 

where  n is the turns of the coil, 0 is the space permeability, Hdc is the external magnetic field, I is the 
current, and L is the length of the coil on top surface of the upper block. The Ampere force on the 
surface of the nether fixed block is equal in magnitude and opposite in direction to the force F, as 
shown in Fig. 1. The piezoelectric unimorph vibrates under the Ampere forces. The piezoelectric 
material works in d31 mode, and the piezoelectric equations can be given by [12] 
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where S1 and T1 are respectively the strain and stress in the piezoelectric material, Ds11  denotes the 
elastic compliance coefficient, g31 is the piezoelectric voltage constant, and E3 and D3  represent the 
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electric field strength and electric displacement, respectively. Assuming D3=0 (open circuit), the 
voltage across the top and bottom surfaces of the piezoelectric material can be expressed as 
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where d is the thickness of the piezoelectric material. From Eq. 4, it can be seen that the output voltage 
V3 is proportional to the stress S1, which is induced by the Ampere forces according to Eq. 1. 

 
Fig. 1. Schematic diagram of the proposed structure 

3 Results and discussions 

A prototype is fabrication according to Fig. 1. The piezoelectric unimorph consists a piezoelectric 
layer and a substrate layer. The two layers of the unimorph are bonded using adhesive under load. The 
material of the fixed blocks is aluminum. The output voltage of the device is measured by an 
oscilloscope. 

 
Fig. 2. Output voltage as a function of frequency at 0.1 mT 
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The external dc magnetic field is set at 0.1 mT, and the current in the coil is 100 mA. Fig. 2 shows 
the output voltage versus frequency of the electric current under non-resonant state. It can be seen 
from Fig. 2 that, the voltage increases with the exciting frequency. When the frequency varies from 
10 Hz to 45 Hz, the voltage is increased from 0.209 V to 2.048 V. For instance, at the frequency of 30 
Hz, an output voltage of 0.5984V can be obtained at the dc magnetic field of 0.1 mT. The strong 
response of the device to external magnetic field is due to the Ampere forces and the resulting 
moments. 

4 Conclusions 

In this paper, we have developed a dc magnetic detector based on Ampere forces. Under an 
applied external dc magnetic field and an ac electric current in the coil, resulting moments are 
induced, and the piezoelectric unimorph vibrates and generates voltage output. The strong response 
makes the device ergastic for detecting dc or quasi-dc magnetic field. 
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