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Abstract. The phononic crystal (PC) has band gap characteristics, which can be used to design the 

band gap range by its microstructure, realizing the vibration suppression of specific frequency bands. 

Therefore, based on one-dimensional (1D) PCs, this paper proposes an approach to high-frequency 

vibration isolation for rod-shaped structures. First, the model of bipropellant rod-shaped structures of 

1D PCs is established, and the transfer matrix method (TMM) of band gap calculation is introduced. 

Then, the characteristics of band gap and their influence factors are studied using TMM. And 

combined with the frequency response curves, effect of boundary conditions on finite bipropellant rod 

of 1D PCs is also studied. Last, taking the truss rod of support structure of space camera as an example, 

simulation is conducted. Results show that the proposed method is effective with great vibration 

suppression of 750-2000Hz, broadening the application prospects in other areas. 

1 Introduction 

Many components on spacecrafts are rods, such as the support truss of space camera[1], the tripod 

of solar array structures[2], the truss structure of the Space Station[3] and etc., as shown in Fig. 1. In 

the process of launch, separation, orbit operation and return, the vibration caused by the rocket thrust 

pulse, the separation shock, the micro vibration, the flutter and other inspiriting loads will propagate 

on these components, distroying the sturctures or affecting the performance of other equipments on 

spacecrafts. Up to now, passive vibration isolation method and active vibration control method are the 

main approaches to vibration reduction for spacecrafts. But the passive vibration isolation method 

relys on the stiffness and damping of the isolator, limited by the characteristics of the damping 

material itself. And the devices of active vibration control are always hurg and complexed, which 

might not be reliable in severe space environment. On the contrary, the band gap characteristics of  

PCs can be adjusted simply by the design of the microstructure configuration to cover the frequency 

range of interest. Moreover, the wide band gaps do not depend on the properties of materials and  the 

structure of vibration suppression is more reliable. 

 
  

(a) Support truss of space 

camera 

(b) Tripod of solar array 

sturctures 

(c) Truss structure of  the Space 

Station 

Figure.1 Rods on spacecraft 

PC[4] is actually a kind of periodic material, whose remarkable characteristic is band gap. Recent 

research[5][6] show that for local resonant PCs[7], when the vibration frequency gets close to the 

natural frequency of microstructure, the elastic wave resonates locally with the microstructure(the 
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minimun unit cell of PCs), consuming the energy of vibration and suppressing the propagation of 

vibrtion waves, which can get application in acoustic wave control[8], noise and vibration reduction[9] 

and other areas, but has not been used in high-frequency vibration reduction for rod-shaped structures 

on spacecrafts. Theoratically, by using components of PCs as structural rods instead of traditional 

ones, the capacity on vibraition suppression of components can be increased. 1D PCs have a simple 

structure configuration, easy fabrication and wide band gap, making it most possible to get 

application in engineering first. 

Given all this, this paper proposes an approach to high-frequency vibration isolation for 

rod-shaped structure based on 1D PCs. The model of bipropellant rod-shaped structure of 1D PCs is 

established, and the band gap characteristics of both infinite bipropellant rod-shaped structures and 

finite rods of 1D PCs are studied using TMM. And taking the truss rod of support structure of space 

camera as an example, simulation is conducted validating the proposed method of high-frequecy 

vibration reduction. 

2 Characteristics of 1D PCs 

According to the theory on band gaps of the local resonant PCs, the band gap characteristics are 

closely related to the structure of the microstructure. Therefore, the 1D PC is studied this paper using 

TMM[10], and the variation of the band gap characteristics is analyzed. Then combined with the 

frequency response curves of the finite 1D PC rod, the research on its capacity of vibration suppress is 

carried out, which provides theoretical guidance for the design of high-frequency vibration isolation 

for rod-shaped structures based on 1D PCs. 

Calculation theory of 1D PC gaps based on TMM[11]. 1D PCs[11][12] are usually considered as 

periodic structures consisting of rod-microstructures. And according to the number of kinds of 

materials in a microstructure, it can be divided into bipropellant ones, tripropellant ones, etc.. In this 

paper, the microstructure is made of two different materials, denoted as A and B with constant radius, 

as shown in Fig. 2(a). The lengths of rod A and B are respectively 
1

a  and 
2

a , thus the lattice constant 

1 2
a a a  . The radius of both rod A and B is r , and moreover, 10a r . S  represents the 

cross-sectional area. The density and elastic modulus of material A is 
1

  and 
1

E  , and 
2

  and 
2

E  for 

material B. The x  axis is along the period direction of the rod-shaped structures. The y  axis is 

perpendicular to direction x  within paper. The z  axis is vertical to paper, thus composing the right 

hand coordinate system with x  and y  axes, as shown in Fig. 2(b). Theoretically, the perfect 

rod-shaped structures of 1D PCs is infinite along x  axis, but finite along the other two axes. 
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(a) phsical model (b) coordinate system 

Figure 2. Model of perfect bipropellant rod-sturctures of 1D PCs  

The wave equation[13] of longitudinal vibration on a bar is 

2 2

2

2 2

u u
c

t x

 


 
                                                                                                                                  (1) 

where  ,u x t  is the longitudinal displacement at the position x  and the moment t , and c E   is 

the longitudinal wave velocity, E  the elasticity modulus,   the density. 

Assuming that 

   
j

,
t

u x t v x e


                                                                                                                                   (2) 
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where  v x  is the longitudinal vibration amplitude at the position x , and   is the angular frequency 

of longitudinal waves. 

Substituting Eq. 2 into Eq. 1, then the amplitude  v x  can be calculated as 

     cos sinv x A x B x                                                                                                                (3) 

where ,A B  are the unknown state parameters, and c  . 

Thus, the stress at the position x  can be written as follows 

       sin cosF x ESv x ES A x ES B x                                                                                        (4) 

Considering a 1D PC rod microstructure composed of m  kinds of various materials, each 

microstructure can be divided into m  parts, and that each bar is made of uniform material. For every 

bar, 
i

l  is the length, 
i

S  the cross-sectional area, 
i

E  the elastic modulus, and 
i

  the density. For 

microstructure n  bar i , the local coordinate system is established as shown in Fig. 3. 
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Figure 3. Local coordinate system of 1D PC rod 
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Considering the continuity of the right end of microstructure n  bar i  and the left end of 

microstructure n  bar 1i  , there are 

   1
0 , 1, 2, , 1

n n

i i i
l i m


  Q Q                                                                                                              (6) 

Thus 
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Similarly 
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Considering the continuity of the right end of microstructure n  bar m  and the left end of 

microstructure 1n   bar 1 , there are 
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1
0

n n

m i
l
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Thus 
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According to Eq. 10 and Eq. 8, then 

 
1 1 1 1 1

1 1 1 1 2 2 1 1 1

n n n

m m m m m


    
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where  
1 1 1 1

1 1 1 2 2 1m m m m m


   

  
 T L R L R L R L R  is the transfer matrix. 

In this case, the Bloch theorem[14] can be used on the boundaries between the neighborhood 

microstructures, as follows 
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where q  is the longitudinal wave vector, valuing in the first Brillouin district, a  the lattice constant 

of one microstructure, and 
1

m

i

i

a l



  . 

Simultaneity of Eq. 11 and Eq. 12 leads to 

  j

1

qa n
e  T I X 0                                                                                                                            (13) 

where I  is identity matrix of size 2 2 . 

For a given vibration angular frequency  , to make 
1

n
X  a non-zero solution, the characteristic 

equation must be 

 
j

0
qa

e  T I                                                                                                                                 (14) 

By solving Eq. 14, the corresponding relationship between the wave vector and the vibration 

angular frequency can be drawn as the band structure diagram of the longitudinal vibration of the 1D 

PC bar. 

Characteristics of bipropellant rod-shaped structures of 1D PCs. For the perfect bipropellant 

rod-shaped structures of 1D PCs as shown in Fig.2(b), the lattice constant of its microstructure is 

assumed as 0.2a m . The cross section is round with the radius 20r mm . Each microstructure 

consists of two materials, aluminum and epoxy (which are common in engineering and tractable). 

And the material parameters are shown in Table 1. Base on TMM, the longitudinal vibration band 

gaps of the rod-shaped structures of 1D PCs is simulated. And the diagram of energy band structure is 

shown in Fig. 4. 

Table 1 Material parameters 
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(a) real wave vector (b) virtual wave vector 

Figure 4. Longitudinal vibration energy band structure  

From Fig.4, there are none curves of real wave vector during some frequency range in the band 

structure diagrams, which indicates that vibration waves of these frequency cannot propagate on the 

rod-shaped structure of 1D PCs. The range of these frequency is called band gap, validating the 

effectiveness on suppression of vibration propagation on the designed rod-shaped structures. 

Furthermore, the corresponding amplitude of imaginary wave vector during band gaps reflect the 

capability on vibration suppression. 

The simulation results of energy band structure show that the starting and terminating 

frequencies(SF and TF) of the first gap of longitudinal vibration are 840Hz and 2000Hz respectively. 

Moreover, the first and second natural frequencies of longitudinal vibration of one single 

microstructure are respectively 962Hz and 2628Hz. It can be suggested that gaps of local resonant 

PCs are closely related to its microstructure configuration. Thus with the design of microstructure 

configuration, the natural frequencies of microstructure are changed, adjusting gaps covering the 

frequency range of interest. 

The larger the lattice constant is, the lower the natural frequencies of microstructure are, thus the 

low-frequency band gap appearing. Fig. 5 displays the variation of the first band gap and the second 

band gap of the 1D PCs as a function of the factor a . During the calculations, the radius r  is fixed to 

be 0.02m  and the length ratio is 1
Al Epoxy

a a  . As shown in Fig. 5, with the increasing of the lattice 
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constant, both the first and the second band gaps move to low-frequency observably, but the width of 

both gaps decrease at the same time. Meanwhile, SF of the first gap and TF of the second gap move 

closer, which means there might be a new blended gap equivalently.  
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Figure 5. The first and the second band gaps with the change of the lattice constant 

The length ratio also has effect on the natural frequencies of the microstructure, which can adjust 

the range and width of band gaps. The variation of the first band gap and the second band gap as a 

function of the factor 
Al Epoxy

a a  is shown as Fig. 6(a) and Fig. 6(b) illustrates the width variety of the 

two gaps. In the Fig. 6, the lattice constant a  is fixed to be 0.9m  with the radius fixes to 0.02r m . 

From Fig. 6(a), it can be found that with the increase of the ratio of Aluminum, both gaps move to 

high-frequencies. That is by reason that the natural frequencies of an Aluminum bar are 

correspondingly higher than those of an Epoxy bar of the same geometry and boundary conditions. As 

is shown in Fig. 6(b), the width of the first band gap increases to maximum which is around 2 kHz and 

then drops again. Unlike the trend of the first gap, the second gap fluctuates twice, and it reaches vale 

where the first gap achieves peak, which might due to the differences on the leading vibrate models. 

Therefore, it is illuminated that the width of band gaps can be adjusted by proper design of the ratio. It 

also seems that the band gaps close where the ratio is ultimate at 0 and  , as shown in Fig. 7(a) and 

(b), validating the fact that a rod made of unitary material does not have band gaps. That is, the 

material properties can affect the characters of gaps, but cannot determine the existence of gaps. 

Besides, the sequence of the two materials in one microstructure are irrelevant with gaps, as shown in 

Fig. 8.   
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Characteristics of finite 1D PC rods. For the infinite bipropellant rods of 1D PCs, the sequence of 

different materials in one microstructure has no impact on gaps due to the periodic boundary 

conditions. However, in practical applications, the dimension of a component is finite. The number of 

microstructures and the sequence of materials will ineluctably infect the characteristics of gaps.  

Fig. 10 is the sketch of finite bipropellant rods of 1D PCs. The number of microstructures is 

assumed as 3. The configuration parameters of the microstructure and the material parameters are the 

same with those of infinite rod-structuers. The sine excitation of acceleration is imposed at one end of 

the rod, with the input amplitude of 1 and the frequency range for 10-2000Hz. Then output amplitude 

of acceleration at the other end is observed, as shown in Fig. 10.  

 
Figure. 10 Sketch of finite 1D bipropellant PC rod 

With the other conditions fixed, the frequency response curves of the finite 1D PC rod with 

different microstructure numbers and sequence of materials in one microstructure is simulated 

respectively, as shown in Fig.11 and 12. As is shown in Fig. 11, the sequence of materials in on 

microstructure do has effect on gaps of the finite 1D PC rods. But with the amount of microstructures 

increasing, the finite 1D PC rod verges on the infinite one, resulting that gaps are less sensitive to the 

sequence. Theoretically, finite PC rod with larger number of microstructures has stronger capacity of 

vibration suppression. Moreover, it is less sensitive to the sequence of materials in one microstructure, 

which means the capacities of propagation reduction for both positive and negative direction 

vibration wave are almost equal. Thus the direction of the installation has no impact in application. 
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(a) 3 microstructures (b) 6 microstructures 

Figure 11. Frequency response of the 

finite 1D PC rods with different 

microstructure numbers  

Figure 12. Frequency response of the finite 1D PC rods with 

different sequences  

3 Research on high-frequency vibration isolation for rod-shaped structures 

As shown in Fig.1(a), taking the truss rod of support structures of space camera as an example, the 

method of high-frequency vibration isolation is studied. 

Parametric design of 1D PCs for high-frequency vibration isolation. According to the research 

above and the requirements of high-frequency vibration isolation, the microstructure is designed as 

the 1D bipropellant straight rod with circular cross-section. And the lattice constant is 0.9a m , with 

the radius 20r mm and the ratio 1
Al Epoxy

a a  . Each microstructure consists of two materials, 

Aluminum and Epoxy are shown in Table 1. Then the SF and TF are respectively 830Hz and 2010Hz, 

and the frequency band range of vibration isolation is wide. 

Theoretically, the larger the lattice constant is, the stronger the capacity of vibration reduction is, 

but due to the limitation of dimension in realistic application, the unit number is 3, with the overall 

length of 2.7m, which is exactly the length of the original truss rods, as shown in Fig. 13. 

 
Figure. 13 Sketch of the vibration isolation rod base on 1D PCs 
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Simulation verification and analysis. Inspiriting respectively at the Epoxy end and the Aluminum 

end of the designed rod as well as one end of the rod made of Aluminum only from 10Hz to 2000Hz, 

the acceleration frequency response of the other end is simulated, as shown in Fig.14 and 15. 

Compared with Fig.14, it can be indicated that the vibration wave propagation cannot be suppressed 

when the pure Aluminum rod is in the state of non-control. While under the same conditions, the 

high-frequency vibration isolation appears on the designed rod. This shows that the design of the PC 

rod is effective in high-frequency vibration, but sensitive to the sequence of materials in one 

microstructure, which means the capacities of propagation reduction for vibration wave of both 

positive and negative direction are quite different. Thus the Epoxy end must be installed close to 

disturbing sources while the Aluminum end towards the target equipments of vibration suppression. 
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(a) Inspiriting at the Epoxy 

end 

(b) Inspiriting at the Aluminum 

end 
Figure.15 Frequency response curve   

of  rod made of Aluminum only 
Figure.14 Frequency response curves of the designed rods 

5 Conclusions 

This paper conducts the research on rod-shaped structures of 1D PCs by TMM. The characteristics 

of gaps are studied, and the capacity of vibration isolation of finite rod of 1D PCs is analyzed 

combined with the frequency response curves. Taking the truss rod of support structure of space 

camera as an example, this paper presents a design of bipropellant rods based on 1D PCs and 

simulation is carried out. Results show that the proposed rod can suppress the propagation of 

vibration of 750-2000Hz, validating the method of high-frequency vibration isolation for rod-shaped 

structures base on 1D PCs, which provides a new approach to high-frequency vibration isolation.  
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