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Abstract. Based on typical scale-free network models, we set up the partial differential  equation 

satisfied more general dynamic systems, and then we not only find another important topological 

property of scale-free networks, but also discuss the real background meaning of every function in the 

dynamical systems. Meanwhile we generalize the BA-network-model growth way 

(“star-graph-growth-way”). Starting from a more general situation, we establish a network model 

containing “star-graph-growth-way” and “triangle-growth-way”. By analysis, this model is not only 

scale-free but also small-wall. Finally, distinguish the connect between the scope of the power law 

parameters. 

1 Introduction 

In the past twenty years we have seen a peak in the research of a wide range of complex systems 

which can be described in terms of networks--vertices connected together by edges. Small-world 

effect (any two vertices in the system can be connected by relatively short paths and local clustering 

characterizes the tendency of groups of vertices to be all connected to each other) and Scale-free 

property (vertices degree distribution follow a power-law) are common in most real-life 

networks(Ref. [6], [7], [9], [18], [21], [22], [23], [29], [30], [31]), transportation systems or social and 

economic networks and so on. Complex networks with these two characteristics are called 

small-world scale-free networks.The time sees three steps on studying complex systems and 

networks. The first step: In the 1950s, based on researching the classic the graph theory, Erdös and 

Rényi  (Ref. [15]), as the pioneers of this investigation, came up with the stochastic network model 

(ER-model) to describe complex network. The second step: Watts and Strogatz  (Ref. [2], [4]) put 

forward the small-world model (WS-model) in 1998. The third step: By researching the topological 

structure of WWW, Barabasi and Albert (Ref. [3]) presented firstly the scale-free model (BA-model) 

P(k)≈k in their article published in 1999, where  is called as scale-free parameter and its value 

range follows 2<<3 at present (Ref. [20]). It is so clear for us that every step has itself focus. The 

researching way has been pushed from “regualtion and stochastical” to “the complex”. 

ER-model has smaller average path length no higher clustering coefficient.  WS-model has the 

same as the degree distribution of ER-model, poisson distribution. The clustering coefficient of 

BA-model presented drops drastically from a very high value to a smaller one (even 0) when 

increasing time t from 0 to ∞. In a words, three networks models mentioned above can not describe 

better numbers of real-life networks having small-world effect and scale-free property. It is an urge 

research project how to design some better models. Taking three representative models into account, 

researchers generate abundant various models, each one is structured with individual angle, which 

have scale-free property no small-world effect like stochastic models BA scale-free two-way 

evolution network models  (Ref. [29]), an evolving model for scale-free collaboration networks (Ref. 

[31]), a dynamic scale-free network model (Ref. [23]), etc. Apparently, these new vertices of each 
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model are added into networks in isolation in this dynamical process. The result leads to it with lower 

cluster coefficient. For obtaining higher one, some studier build some deterministic models like 

Apollonian models (Ref. [8], [13]), Farey graph models  (Ref. [32]), Sierpinski models (Ref. [33]) 

and so on. These models have small-world effect but no randomly generating. The dynamical 

evolution of most real-life networks is random and free. So them are not ideal ones. The writer (Ref. 

[30]) says a stochastic model named group growing model based small-world scale-free network 

which has these two characteristics. 

In order to making models built having small-world effect and scale-free property, probers come 

up with two ways, the direct and the indirect. 

Direct way. Make models having these two characteristics in the dynamical evolution process. 

Indirect way. After the models have been built, make models having these two characteristics by 

taking many operations. The good sample is WS-model is generated on the base of ER-model by 

removing some edges and adding some new edges with one certain probability. Such better models 

do not win more attentions. 

Firstly, we, in this paper, establish a dynamical equation relatively with  the dynamical evolution 

process of complex systems and networks. Secondly, we design one class tuned parameters 

small-world scale-free network Models by improving the simple entering way of adding some new 

isolate vertices into networks. Some useful definitions  (Ref. [1], [5]) are mentioned below. 

Average Path Length (APL). The distance between two vertices is the least number of edges to get 

from one vertex to the other. The average path length is the smallest number of links connecting a pair 

of vertices, averaged over all pairs of vertices. 

Clustering Coefficient. The clustering coefficient Ci of a vertex i is the ratio of the total number ei 

of existing edges between all ki it nearest neighborhoods and the number ki(ki1)/2 of all possible 

edges between them, ie Ci=2ei/ki(ki1). The cluster coefficient c of the whole network is the average 

value of all individual Cis, C =ΣCi/nv(t). 

2 One dynamical partial differential equation 

 

    Making some descriptions and states for the dynamical evolution process, which contains some 

new vertices entered continuously, some new edges generated continuously, some old vertices 

removed continuously, also, some old edges removed continuously and much interference from the 

outside at each time step, of both complex networks and complex system.  Researchers not only apply 

theoretical analysis, but also put to use simulation by computer, there exists lots of similarity about 

these under all almost evolutions happening under this given preferential attachment mechanism. As 

time goes on, the scope of the dynamical complex network become more and more huger by these 

discussions. In the other word, the number vertices and edges increase and its spacial structure will 

become more complex. Nothing will always grow unceasingly. Undergoing after an extended period, 

network itself will tend to a stable or decay. Combining the real background meanings and theoretical 

analysis, we will make a sample depiction about the dynamical evolution way of complex systems 

and complex networks by introducing 5 characteristic functions for a network model N(t). 
(1) The entering vertices function (preferential attachment function)f

*
(t)=f (ap1(t)m, t, ki(t), 

Σ∏1j(ki)) indicates that there are a new vertices entered in the network N(t1) at time step t. The new 

vertex ja will devote p1(t)m(0<p1(t)<1) edges to N(t) by connecting with some old vertices in N(t1) . 
The probability which the degree ki(t) vertex obtains new links obeys the preferential attachment 
probability ∏1j(ki), where Σ∏1j(ki) stands for all kinds of probability co-existing (the most important is 
preferential attachment probability).  

(2) The removing vertices function g
*
(t). After network goes through the quickly increasing process, 

g
*
(t)=g(p2(t)b, t, ki(t), Σ∏1j(ki)) shows that there are (p2(t)b (0<p2(t)<1) old vertices removed from the 

network N(t1) at time step t. An old vertex jb will be removed with the probability ∏1j(ki) (the 
opposite-preferential attachment probability). 
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(3) The adding edges function. h
*
(t)=h(p3(t)r, t, ki(t), Σ∏3j(ki)) suggests there will be p3(t)r 

(0<p3(t)<1) “new”edges added among a few pairs of vertices which are not linked in the network 

N(t1) at time step t. The two vertices linked by one new edge jr will be selected with the preferential 
attachment probability ∏3j(ki). 

(4) The canceling edges function. z
*
(t)=z(p4(t)sr, t, ki(t), Σ∏4j(ki)) suggests there will be p4(t)s 

(0<p4(t)<1) “new”edges added among a few pairs of vertices which are not linked in the network 

N(t1) at time step t. The two vertices linked by one new edge js will be selected with the preferential 
attachment probability ∏4j(ki). 

(5) The external disturbance function. φ(t) hints the process of networks evolution will endure 
unavoidable influence from the outside world. 

It is obvious for us that both the internal function from its internal factor (adding edges, removing 
vertices, canceling edges) and the external factor (entering vertices, disturbance) will make the 
dynamic evolution of the network become most harmonious. 

We may suppose the dynamic evolution of a connected original network N(0) having m0 vertices is 
continual and then can set up a corresponding partial differential equation to explain this dynamical 
system, according to the independence of events. There is a corresponding partial differential equation 
for a degree ki(t) vertex in the network N(t) at time step t shown as 

)()()()()(
)( **** ttzthtgtf

t

tk
i 



                                                                                                         (1) 

We are permitted to suppose the equation (1) having a solution 
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These parameters αi(i=1,2,...,r) in (2) is irrelative with t and ti, moving forward 
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1
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As the same result, these parameters βi(i=1,2,...,r) in (3) is also irrelative with t and ti. Finally, we 
acquire the arisen probability of vertices of degree k in N(t). 

3 Dynamic models in communication networks 

 

    Any real complex network can not work by itself. In the dynamical evolution process, it will be 
influence by some factors from itself internal and the outside. There are many influence helpful for it, 
others will be bad. For this network growth process at present, learners almost apply the method that 
new vertices will be entered randomly into network and then link some old vertices by the preferential 
attachment probability. Obviously, these research is limit. Try to imagine, in real society, not only are 
some vertices entered into network, but also are many sample graph entered into it. At the same time, 
each new vertex can link some old vertices by different attachment ways. For example, in a real 
communication network, a classical scale-free network model, named collaboration network, is made 
by Zhang (Ref. [31]) in a concrete condition that a new person will also make friends with these people 
having highly connections in each other. The ideal model is rare in life. From the real background 
meaning, we have established a scale-free network model, named two different preferential 
attachment probability co-exist network, in this real suppose that a part of people like making friends 
with these people having highly connections in each other; parts of people prefer to communicate with 
those persons having more plenty friends (named commonly as social strong hands); others who have 
even no a clear goal and a plain understanding about the social network make randomly friends with 
some people. There is a general phenomenon that some people like making new friends alone, 
however another will introduce their old friends to those new friends just known soon really existence. 
Considering the real background, we bring about 3 classes tuned parameters small-world scale-free 
network models in this paper. There will be some detailed discussions talked below. 
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A New models in communication networks 

The constructing process of N(t) is in the way: the original network N(0) is a connected simple 
graph having n0≥2 vertices and m0≥1 edges. From time step t≥1, these two operations below will be 
carry out.  

Growth. At time step t, there is a group of 2a new vertices entered into the network N(t1). 

The Preferential Attachment Operation. This group of vertices are made up two classes different 

vertices. The number of the first part is 2αa, another is 2(1α)a. Each vertex of the first part links 

randomly m(≤m0) old vertices in N(t1) by using the preferential attachment probability ki/Σkj. The 
second part contains two classes different vertices, A-class and B-class. Any two vertices of the second 

part will generate a new edge by link each other. The operation leads to (1α)a new edges. 
Analogously, the two classes vertices, A1-class and A2-class, belong to the A-class. The two vertices of 

a new edge of the A1-class, including 2μβ(1α)a vertices, will simultaneously link randomly m1(≤m0) 

old vertices in N(t1) by using the preferential attachment probability ki/Σkj. m3 edges incident with  

each end of a new edge of the A2-class, including 2(1μ)β(1α)a vertices, will simultaneously link 

randomly any m3(≤m≤m0) old vertices in N(t1) by using the preferential attachment probability ki/Σkj. 

Another end of the new edge of the A2-class will link randomly m1m3 diverse old vertices in N(t1) 
by using the preferential attachment probability ki/Σkj. Every end of a new edge of the B-class, 

including 2(1β)(1α)a vertices, will link randomly m1(≤m0) diverse old vertices in N(t1) by using 
the preferential attachment probability ki/Σkj. This growth process may circularly go on until an 
expected model is captured. Obviously, m3 edges incident with each end of a new edge of the A2-class 

links randomly m3(≤m≤m0) diverse old vertices in N(t1) will bring m3 triangles (i.e. K3) which shows 

a man having a old friend make friends with m1 unknown persons and then introduce his old friend to 
m3 of those new friends just known soon by the way. After t times, the network model N(t) has 

nv(t)=n0+2at vertices and ev(t)=m0+[2am(1α)a]t edges. 

Assuming that ki is a continuous real variable. According to its dynamical evolution mechanism. 

Case A1. A degree ki vertex only links simultaneously m3 edges incident with each end of any new 
edge of the A2-class, so the entering vertices function is 
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Case A2. A degree ki vertex only links simultaneously m1m3 edges  incident with each end of any 
new edge of the A2-class, which gives the entering vertices function as 
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Case A3. A degree ki vertex not only links m－1－m3 edges  incident with each end of any new edge of 

one part, including (1－u)(1－μ)β(1－α)a new edges, of the A2-class, but also links m3 edges  incident 

with each end of any new edge of another part, including u(1－μ)β(1－α)a new edges, of the A2-class. 

Then we have  the entering vertices function 
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         We take others functions g*(t)=h*(t)=z*(t)=φ(t)=0. Consequently, ki satisfies the dynamical 
equation 

Case B1.                         *
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Case B3.                         *
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These equations (4), (5) and (6) can can be written as 
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with j=1,2,3, where 
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The solutions of these equations above (7) with j=1,2,3, when the initial condition that each vertex i at 
its introduction has  ki(ti)=m, are respectively as 
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)(   with j=1,2,3. According to (8), the probability P(ki(t)<k) that one vertex has a 

degree ki(t) smaller than k can be written as 
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with j=1,2,3. Suppose the density function P(ti)=1/(m0+ti)for adding these new vertices at equal time 
interval into the network. Then we can compute 
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with j=1,2,3. Thereby, the degree distribution P(k) for each case can be obtained 
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with j=1,2,3. Under three cases Case B1, Case B2 and Case B3, as t→∞, predict asymptotically 

        
1/1

.3

/1

.3

.3 1
)(




j

j

Q

j

Q

kQ

m
kP  

with j=1,2,3. Clearly, they obey the BA-model P(k)≈ k
-
. 

B  A new property 

We will calculate these equations (4), (5) and (6) by cumulation 
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where |V(ki,t)| stands for the number of vertices having degree ki at time step t. It is evident that this 
equation (12) attend to the constant values of Case B1, Case B2 and Case B3 as follows 
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For some researchers working the network security, they want to obtain the number of hub-vertices 
after getting the degree distribution P(k), because they can protect it from interference by control some 
hub-vertices (Ref. [19], [25]) of the whole network. Next, we use the cumulative formula (Ref. [5]) 
here 
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Our model N(t) in three cases, respectively, holds 
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with j=1,2,3. By the analysts above, our model N(t) is a scale-free model, since 2<1+1/Q3.j<3 by tuning 
suitably parameters a, α, β and μ with j=1,2,3. 

4 Summary 

According to a mass of research results about complex systems and networks at present, we firstly 
set up the general partial differential equation with 5 characteristic functions and achieve its solutions 
by abstract numerical analysis under a special initial condition. Secondly, considering the boundary of 
current research and the real-life background meanings, we establish one tuned parameters 
re-communication network model that has scale-free property. In this dynamical evolution process, we 
apply the degree-preferential-attachment mechanism (Ref. [24]) to make the model be scale-free and 
connect one part new adding vertices with edges to form masses of higher dense triangles for letting it 
be small-world. At the same time, the procedure of creating our models is so easy to do and achieve 
that we can build network models with the realistic topological structure, then explain and estimate its 
characters by simulating complex networks growing process. Our model may provide a useful tool to 
investigate the influence of the clustering coefficient or average path length in different dynamics 
processes taking place on networks. In addition, we propose some meaningful problems as the 
research in the future (Ref. [16], [26,] [27], [28]).  

Problem 1. Reasonable proportion. In a growing network, the power-law parameter  will suffer these 
influence from the variational ratio between the number of isolate adding vertices and the number of 
simple graphs. Our models is a good case in point. This problem finding a golden ratio in complex 
systems will be discussed and debated for a long time in the future. 

Problem 2. The diversity of adding graphs. In the dynamical evolution process of most real-life 
networks, not only isolate vertices are added, but also some simple graphs are entered. Themselves 
attachment rules are yet largely identical but with minor differences. This problem hunting a inner law 
in this randomness for describing dynamics processes of networks is on the way. The conclusion goes 
here. 
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