

A New Data Acquisition Client-software Model Used for Mobile

Application Analysis

Xiaodong Liu, Zhiyi Qu, Ruixiao Zhang

School of Information Science & Engineering, Lanzhou University, Lanzhou, China

*liuxd14@lzu.edu.cn, quzy@lzu.edu.cn, zhangrx2014@lzu.edu.cn

Keywords: data acquisition; software model; Mobile Application Analysis; Android

Abstract. This paper proposes a new data acquisition client-software model used for the Mobile

Application Analysis. Compared with the existing software models, the model proposed in this paper

can improve the reuse rate and reduce the code duplication rate of software, it can also share data

between multiple applications. The paper gives overview of the software model, then discusses the

necessity and function of each module respectively and defines the call relationships between

modules. To explain the runtime status of the model accurately, this paper also defines internal and

external event types that drive the model. In order to verify the feasibility of the proposed model, the

experiments are performed on the Android operating system using the proposed model. At last, the

experimental results show that the proposed software model is feasible.

1 Introduction

With the rapid development of information technology, the enterprises are inseparable from the

network to survive and develop in the new information era [5]. The network also brings hidden danger

in communication between enterprises. In 1988, network identification function is provided by ISO

framework, which is called X.509 protocol. The most important part of this protocol is public key

certificate. In this paper, a digital signature scheme based on digital certificate is used to ensure

integrity of online trading data, non-repudiation of transmitting information and certainty of traders.

Global mobile application market is very prosperous with the fast development of the Mobile Internet

and the explosive growth of mobile terminal device. Prosperity of mobile application market also

makes the competitions among application developers. In order to occupy a place in the fierce

competition in the market, mobile application developers must do the application analysis. Mobile

application of analysis means to obtain basic data of mobile users to use applications, use the theory

and techniques of the Big Data, dig user's characteristics, identify gaps in product design, discovery

operation promotion opportunities, and optimize product and operational strategies to enhance

service quality.

As data acquisition is the first step in the Mobile Application Analysis, it is very important for

subsequence processing. In recent years, there are some research results on it, She’s work [1]

presented a data acquisition component, this component is used as SDK to embed into applications.

Kang and Qu proposed a data acquisition client software that implemented with Ajax. The component

proposed in [1] implements some general functions, but its reusability is poor, besides, its code

duplication rate is high. The client proposed in [2] is a lightweight approach, but the data sending

frequency is too high and the lack of consideration for the cloud response to client timely. This paper

improves the model proposed in [1], and put forward a new mobile application analysis data

acquisition client software model that can remedy the defects existing in [1, 2] and bring new

capabilities , as shown in Figure 1.

2 Software Model

The main idea of model proposed in this paper is to extract general functions of the mobile data

collection as Server and keep all the functions that are directly related to the data collection as Client.

Joint International Information Technology, Mechanical and Electronic Engineering Conference (JIMEC 2016)

© 2016. The authors - Published by Atlantis Press 181

Therefore, the data acquisition client model can be divided into two parts: (1) Client, the Client is

alive in a process of application essentially, the user to use this software model define data acquisition

method and embed into applications. In addition, Client needs to interact with Server. (2) Server,

Server is a system service process, provides cache management, data encryption and other service for

each Client. At the same time, Server is also responsible for dynamic configuration and data

transmission between whole data acquisition model and cloud.

Client and Server are in a different process, Client need to send a request to the Server to call the

service. In order to adapt to the needs of different tasks to send the request, the client can send

synchronous and asynchronous request. When Client sends a synchronization request, the Server

response is immediate and it seems that all operations complete in one process from the external point

of view. When Client sends an asynchronous request, the Client does not wait for the Server to

perform the task and return the result. The Client defines the interface to respond to the Server

callback. Therefore, Client needs to define the interface to the Server request and implement the

Server asynchronous callback method. While the Server needs to implement the Client request

interface. If an asynchronous request interface is implemented, the callback implemented in the client

is called by Server.

Mobile OS

Data

Collection

Cache

Management

Data

Encryption

Network

Transmission

Cloud

Control

Data Acquisition Software Model

synchronous

Request

asynchronous

callback

Client Server

App

asynchronous

request

Cloud

Figure 1 Data acquisition software model

2.1 Data Collection

Mobile Applications Analysis data objects [2] generally include: application distribution channels,

the audience attributes, user behavior and terminal equipment. In the process of data collection, the

application distribution channels, audience attributes and terminal equipment and other data

acquisition targets are implicitly collected, but user behavior is explicitly collected. The implicit

collected data is mostly static and conversely and the explicit collected data is relatively dynamic. The

function of this module to be achieved should be the union of them, then we focus on explicit

collection.

Explicit data acquisition is defined as a collection of methods. These methods can be divided into

these categories [4]: basic statistical functions, custom event statistics, error statistics, and social

statistics.

(1) Basic statistical functions includes account statistics, page statistics. For example, the time

users stay on one interface is a content page statistics.

(2) Custom event statistics is an extension mechanism that allows you to define event ID,

parameter names and values to extend the statistics, but this custom events often have to rely on the

182

basic statistical event. Custom events can be divided into the count events and the calculate events.

The count events count the number of times a particular event occurs and the calculate events count

distribution of numerical values of variables.

(3) Error statistics major recording application crash logs.

(4) Social statistics are a variety of social behavior in the detailed statistics applications and after

further analysis and processing it will form a rich social analysis report.

In order to meet the needs of different user data acquisition, users need to develop their own

methods based on the existing data acquisition methods or directly develop new methods to replace

the existing methods. Therefore, in the data acquisition module can achieve a certain amount of

software reuse and reduce the amount of code duplication. In addition, all the common functions of

Server are extracted to form a whole, which can also improve software reusability and reduce code

duplication.

onCreate

onAppend

onEncrypt

onTransfer

onRecycle

Start

Cache file transmission is started

Cache new data

reopen cache file reopen cache file

Encrypt cache files

Cache file transmission is completed

writable

Write-protected

End

Figure 2 Cache files status

2.2 Cache Management

The necessity of caching: (1) the instability of the network state may result in incomplete data

transmission; (2) sending the collected data in the WIFI state can save the data traffic for the user.

In order to get through the local application data, this paper proposes a component model, which

requires centralized cache data. In order to collect data from the centralized cache, it is necessary to

establish a stand-alone caching warehouse. In the view of static structure, cache warehouse includes

two parts: a part is a large number of cache files, the cache file storage various types of data from

Client; another part is called cache files state table, which is used to record cache files state (Figure 2),

when changing on the state of the cache file, cache file status table also changed Correspondingly.

183

Cache management is the running state of the cache repository. The cache management need to

keep track of each state of the file cache, monitor the cache file life cycle (Figure 2), delete junk cache

files and reduce the waste of storage space. Cache management needs to respond to the client side of

the request interface for each Client to provide the available cache files, but also to ensure that the

outer (including the client) access the cache file legally. After receiving the legal data transmission

requests, the network transmission module calls the interface of the cache management to obtain the

data to be sent, and transfers the given data.

Cache files are managed centrally in this paper. The statistical data can be shared by applications

which use the proposed model in a mobile device. Shared data are generally static, such as the

distribution channels, audience attributes and terminal equipment and other data acquisition targets.

Therefore, the model proposed in this paper can push the compound data of multiple applications into

cloud, and improve the value of the data collected.

2.3 Data Encryption

In order to ensure the security of the collected data in the network transmission, the model of the

collected data is encrypted. In addition, there are certain corresponding relationship between the cloud

decryption algorithm and the client of the encryption algorithm, and in order to improve software

modifiability, so the encryption function will be independent module. When the cloud decryption

algorithm changed, the client model only need to modify and replace this module.

The cache management module calls this module to encrypt the cache file. Before running the

encryption algorithm, the module needs to call the function of the cloud control module to obtain the

latest encryption key.

2.4 Network Transmission

Transmitting collected data completely and saving the user data traffic need to detect the current

network stability and connection types, respectively. In order to decouple the relationship between the

data file, the transport address and the specific network protocol, so the network transmitting function

is independent when constructing the model.

Network transmission module needs to assess the current state of the network, when the network

state does not meet certain conditions, the server can refuse the client to send data requests. This

condition can be the type of the network connection, signal strength, bandwidth, or the combinations

of them. The network transmission module uses the network protocol (HTTP/HTTPS) to transmit

data, and the choice of the specific protocol also needs to be agreed with the cloud. When the data files

that need to be transmitted are beyond the maximum capacity supported by the network protocol, the

network transmission module transmits the data files by block. In order to improve the performance of

the transmission, the model suggests using multiple threads to transmit data.

The network transmission module needs to call the cache management module to obtain the data

file, which calls for the cloud control module to obtain the address of the data file transfer and the type

of the network protocol.

2.5 Cloud Control

When the model is created, this module is added to meet the needs of the dynamic configuration of

the client and to reduce the coupling.

There are two ways to implement this module: (1) pulling mechanism, cloud control module holds

a fixed cloud request address, select a time a request to the cloud server, query the server settings, so

that you can dynamically change the data transmission address; (2) pushing mechanism, the client and

the cloud to maintain a long connection (socket), configuration information through long links

directly pushed to the client. This method can also meet the need of dynamic information

configuration.

However to implement this module, the module must provide network transmission module with

interface that is used to query the type of network protocol and destination URL, and provide data

encryption module with encryption algorithm and encryption key. In addition, this module must

ensure that the client configuration information is the latest.

184

2.6 Cloud Interface

As can be seen from Figure 3, the cloud needs to provide the client with two interfaces: (1) the

cloud control module obtain dynamic configuration from the cloud; (2) network transmission module

transmit files to cloud. The former needs to maintain the security of the communication and the

connection of the fixed. The latter requires high performance and data file recovery to be maintained.

3 Internal and External Events Running on the Driven Model

In this paper, the main event sources of the client model include: the use of user to the application,

dynamic configuration of the cloud and the connection established between Client and Server. For a

more detailed specific acts described in the event-driven model, the paper defines the external drive

events list, as shown in Table 1. In order to distinguish the nature of the event, 7 conceptual event

types are proposed. Some event types are defined specifically for their specificity and importance. For

example, the appOnLoaded is used to refer to a user initiated application. The appOnEmbed event

type, because of its complexity is defined as a more generalized abstract event type. These events are

an important part of the interaction between the system and the external system. It is very important to

improve the usability of the system.

Event Type Description

appOnLoaded Users start the mobile application with analysis function, the Client send a connection request

to the Server.

serverOnBind Server verify the legitimacy of the Client. If valid, the connection object is returned.

Otherwise, the connection is rejected.

clientOnConnected The Client accepts the connection object, requests the Server for cache resources or requests

to transmit the data collected last time.

appOnQuit Normal exit, the Client turn off the connection to the Server.

appOnError App crashes, the Server records exception logs.

appOnEmbed The method of data collection is achieved through embedding in the application or event

interception. Therefore here defines an abstract type of event. Perform the appropriate

methods of data collection in these events.

cloudConfigChanged Events are triggered when the cloud configuration changes.

Table 1 Event type description

4 Verify the Feasibility of the Model

4.1 Functional Verification

The client software model covered in this article is based on the literature [1] derived from the past.

Compared with the literature [1], the difference is that this paper abstracts more common functions in

the whole process of the mobile app data collection to form a single execution Server, and all the

functions directly related to data acquisition are reserved to Client. Therefore, this paper verified the

structure of Client/Server from the aspects of the functionality and performance.

 Service is an application component provided to the application developers by the Android system.

Since its lifecycle is particular, it is still in the background when users switch applications. Service

can be bound with other application components, communicate with the IBinder.

 IBinder [5] is a remote object interface, the kernel is a remote procedure call mechanism, which is

designed for high performance process and inter or outer process calls [5]. AIDL (Android Interface

Definition Language) is the interface description language provided by Android system. Here, AIDL

is a form of IBinder. Through the interface defined by the AIDL, the user in the program to achieve the

interface and then the defined IBinder is obtained.

In order to verify the feasibility of Client/Server, this paper implements a software prototype for

system simulation data acquisition based on Android system. Server is implemented by using Service,

185

and Client is implemented by using Activity since it is embedded in the application. Server and Client

are running in different applications (or processes). The communication between Server and Client is

realized through IBinder, which involves multiple threads, and this paper chose AIDL to implement

IBinder.

In order to verify the functionality of synchronous or asynchronous request sent from the Client to

the Server, this paper implemented the AIDL interfaces as shown in Table 2. By programming and

testing, we can know that both synchronous and asynchronous request functions can be implemented.

Interface Name Description Execution Mode

Synchronized-

Request

Simulate the synchronization request, return the system time of the request

start, which is used to calculate the response time of the Server. This interface

is implemented at Server end.

Synchronous

Asynchronized-

Request

To simulate the asynchronous request, the system time that Client sends the

asynchronous request as the input parameter, which is implemented at Server

end. Asynchronous tasks use a new thread to start and sleep a second to

simulate. After the task completes, the asynchronized callback is called back

to calculate asynchronous delay of the task.

Asynchronous

Asynchronized-

Callback

Callback in Server end, and the delay time of the asynchronous task is

calculated in Client.

call-back

Table 2 AIDL interfaces

4.2 Performance Verification

In order to verify the performance of Client/Server structure that can meet the need of application

statistics, this paper designed a testing process which is used to test the response time of Server

synchronization request and the asynchronous delay time of asynchronous request. The response time

of the synchronization request is the time interval of the Client in which the request is sent to the

Server to execute the request. The delay time of the asynchronous request is the time that the Client is

required to perform asynchronous tasks when the asynchronous request is sent to the Server to

complete the asynchronous task callback start time.

Before the experiment we need to declare that: (1) according to the latest report released by the

TalkingData, the national average each mobile has installed 34 applications. So the Client number

interval is set to 2-27 in this paper; (2) the asynchronous task performed by open threads to sleep 1

second way to simulate; (3) under normal circumstances, only one application is running in the

foreground of mobile devices. Therefore, each Client works out the synchronous and asynchronous

request one by one.

Definition of the testing process: (1) start the specific number (2-2
7
) Activity (Client) and connect

to the Service (Server); (2) per client implements one after the other 100 times Table 2 which shows

the synchronous or asynchronous request and synchronous or asynchronous request by random

number to 2 to take the remainder to determine; (3) to calculate every time synchronous request

response synchronization time and asynchronous requests asynchronous delay time; (4) to determine

the number of clients, to calculate synchronous average response time and average asynchronous

delay time. The results of test are shown in Table 3.
CN SIN AIN ART（/ns） AAD（/ns）

2 101 99 147860 3708900

4 211 189 192576 4765348

8 405 395 187232 4195099

16 799 801 164638 5620149

32 1598 1602 154710 5535376

64 3193 3207 146748 5640941

128 6451 6349 153386 6727544

Table 3 CN, Clients Number; SIN, Synchronous Invoke Number; AIN, Asynchronous Invocation Number; ART, Average Response

Time; AAD, Average Asynchronous Delay

186

We can be seen from the table 3, the response time of the synchronization request is much less than

the 5 second which is the limit of Android UI ANR (Not Responding Application), therefore, the

application of Client embedded will not affect the operation of the application. The delay time of the

asynchronous request is much less than the time of the actual execution task, so that the Server can

handle the client's time consuming request well. With the increase of the number of connected clients,

the average response time and the average delay time of asynchronous requests are not significantly

increased, that is to say, the client load increase did not significantly reduce the server's efficiency.

Therefore, the model proposed in this paper is feasible.

5 Conclusions

In this paper, the data acquisition in the whole process of a more common function to form a

separate implementation of the Server. All the functions which are directly related to the data

collection to Client are kept. This structure can improve the reuse rate of software and reduce the code

duplication. In the design of the cache management module, we use centralized management of cache

files and composite compound application statistics data, so the value of the data collected is

improved. In order to describe the dynamic operation of the system better, this paper also defines the

internal and external event types that are driven by the drive model. The feasibility of the model is

verified in this paper. As mentioned above, the model increases the task of Client and Server

communication, but it also brings a lot of functionality and performance that [1] [2] system do not

have.

6 Expectation

Server can also be extended, these extensions can not only make the system function more

powerful, but also can improve the data collection service. For example, extending function allows

user to enable an application to collect data, this makes the data collection to the data security of user

minimal. Standardized client data format definition and let more application developers use the client

model to collect data can push the compound data of all applications in one device into cloud, and

improve the value of the data collected. In addition, you can use local data to provide data services to

mobile users, for example, gathering statistics on the use of the applications of the frequency can be

used to recommend to remove some of the application is not commonly used, and to clean out free

space for mobile phones.

References

[1] ZePeng She. Design and implementation of data acquisition components of mobile application

based on Android. Beijing University of Posts and Telecommunications, 2013.

[2] Jie Kang, YiWei Qu. Ajax-based implementation of the client application on the mobile data

acquisition Application Platform [J]. Science & Technology for China, 2014(14).

[3] Baidu https://mtj.baidu.com/web/welcome/whitepaper.

[4] Umeng http://dev.umeng.com/analytics/android-doc/integration.

[5] Google https://developer.android.com/reference/android/os/IBinder.html.

187

