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Abstract. The analysis of robustness of complex networks tries to find out the relation between the 
structure of a complex network and its robustness performance, which will be beneficial to some 
work such as network design. The robustness measurement of a complex network is defined at first 
to evaluate its robustness performance. Then a framework is put forward for robustness analysis of 
complex networks. The framework analyzes the impacts of structural parameters of a complex 
network on its robustness by comparing the network structures and its robustness performance 
before and after optimization. These network structural parameters include the degree distribution, 
the average clustering coefficient, the network efficiency and so on. An optimization method based 
on the variable neighborhood search method is developed to solve the network optimization 
problem appearing in the framework. Finally, through the application of this analytical framework, 
it is found that if the degree of nodes in a complex network tends to be consistent, then the upper 
bound of the robustness measurement of the network will increase. In addition, the regression 
relationships between the robustness measurement and some structural parameters of the network, 
such as the average clustering coefficient, the network efficiency and so on, will become evident.  

1 Introduction 
Since Albert et al. pointed out that the scale-free network is very vulnerable under a deliberate 

attack [1][2], how to improve the robustness of complex networks has gradually attracted attentions 
of people [3][4]. Network structure determines the function of the network. Only in depth study of 
the impact that the structure of a complex network has on the its robustness, can we be more 
efficient in designing and optimizing networks with the goal to improve their robustness. 
Robustness analysis of complex networks is just to explore the relationship between the structure of 
a complex network and its robustness performance through analytical or experimental methods. 

In early research, the seepage theory was often used to calculate the critical node removal ratio 
which would result in the phase transition of a complex network. Then, the impact of the degree 
distribution of a network had on its robustness would be measured through the comparison of 
critical node removal ratios of networks with different degree distributions [5][6][7]. But there still 
existed problems in those researches. One was that the definition of the critical state of network, 
which indicated the occurrence of the phase transition, was not suitable for every kinds of network 
[8]. The other was that the critical node removal rate of a network under intentional attack could not 
be calculated accurately by the seepage theory [9]. Thus, adopting the experimental way to analyze 
the robustness of complex networks becomes more and more popular. Wu et al. thought the 
robustness of a network came from the redundancy of edges in the network, then on that basis 
proposed a robustness measurement of complex networks, which was named natural connectivity, 
and further analyzed the effect that the degree distribution, small-world feature and degree 
correlation of a network had on its robustness with the robustness measurement [10][11]. Hu et al. 
measured the robustness of a network with indexes such as the size of the largest connected 
component and the average shortest path length [12]. And a result concluded from the comparison 
of robustness of random networks, small-world networks and scale-free networks was that the 
robustness of small-world networks was best. Schneider et al. regarded the average size of the 
largest connected component of a network under attack as the measurement of its robustness. It was 
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found that under the condition of the deliberate attack, the robustness of the network having the 
"onion" structural characteristic was better within the networks featured by power-law degree 
distribution [13][14][15]. The influence of some other structural parameters, such as the clustering 
coefficient, the assortativity coefficient, on the robustness of a network was studied with similar 
robustness measurement in [16]. 

If the number of nodes and edges in a network is decided, then structural parameters of the 
network are related with each other. In other words, if one structural parameter of the network is 
changed, then other structural parameters will vary. Thus, it is difficult to apply the idea of 
controlling variables in experiments of analyzing the influence of one structural parameter of a 
network has on its robustness. As a result, some conclusions made from experiments may be 
inaccuracy. However, although structural parameters of a network are related to each other, their 
impact on the structure of the network is not the same. It is generally believed that the degree 
distribution of a network can affect the structure more heavily than other structural parameters [17]. 
So it is regarded as a low-order feature of a complex network. In addition, a set constituted by all 
complex networks having the same number of nodes and edges and the same degree distribution is 
classified to an one-order zero-model in statistical research on properties of networks, which also 
shows the fundamental influence that the degree distribution of a network has on its structure [18]. 
Therefore, this paper assumes that the degree distribution is the main factor that affects the 
robustness of a complex network. Since the degree distribution does not completely determine the 
structure of a network, the robustness of the network may still change if some other structural 
parameters of the network vary. Thus, the degree distribution of a network can only determine the 
upper limit of robustness performance of the network. Then, what kind of degree distribution will 
maximize the upper limit of robustness performance of a network? If the degree distribution of a 
network is given, what are the relationships between the robustness and other structural parameters 
of the network? Trying to answer these problems is the main content of this paper. 

This paper will define the robustness measurement of complex networks first, then design a 
robustness analysis framework of complex networks based on optimization theory and finally 
analyze the relationship between the structure of a complex network and its robustness with the use 
of this framework. 

2 Robustness Measurement of Complex Networks 
The robustness of a complex network usually refers to the ability of the network to maintain its 

basic functions under the condition that the network encounters the failure of nodes or edges. There 
are two ways to measure the robustness of a network. One is using some relative simple features of 
the network whose state under attack will be simulated. These features include the size of the 
largest connected component, the critical node removal ratio and so on. The other is using some 
relative complex indicators defined based on the initial structure of the network. These indicators 
include toughness, integrity, tenacity, node connectivity, degree distribution entropy, network 
efficiency, algebraic connectivity, natural connectivity and so on. Due to simplicity and intuitivism, 
the former way has been used widely [19][20]. Compared to the former way, no one of indicators 
defined in the latter way is fully proved to be effective in measuring the robustness of a complex 
network. Therefore, the former way is adopted in this paper. 

Suppose there are N  nodes in a complex network. If the nodes in the network suffer failure one 
by one, then the change of the size of the largest connected component of the network is shown in 
Fig. 1. 
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Figure 1. Change of the size of the largest connected component. 

In Fig. 1, the area encircled by the solid line and the coordinate axis is denoted by 'S  and the 
area encircled by the dotted line and the coordinate axis is denoted by S . Then an index suggested 
to be used to measure the robustness of the network [21] is defined as 

2
0

' 1 (2 ( ) )
N

q

SR S q N
S N =

= = −∑      (1) 

where ( )S q  represents the size of the largest connected component after q  nodes suffer failure. 
According to the definition, the R  satisfies 0 1R< ≤ . The larger the R  is, the better the robustness 
of the network is. The index R  is linearly related to the robustness measurement proposed in 
[13][14][15] but it is more intuitive in measuring the robustness of a complex network. 

Before the robustness measurement R  of a complex network is calculated, the attack mode ready 
for the network such as random node attack, degree priority node attack et al. should be known. The 
value of the robustness measurement of a network is different when the network is faced with 
different network attack modes. Unfortunately, the attack mode which a network will suffer is 
uncertain in real environment. Thus, the robustness of a network should be evaluated 
comprehensively based on its robustness performance under different attack modes. The idea of [9] 
adopted the weighted summation of values of robustness measurement calculated according to 
different attack modes for a network. However, an attacker is always tries to find the most efficient 
attack mode to destroy a network. Thus, the minimum of values of robustness measurement is 
chosen to evaluate the robustness of the network in this paper. Suppose the set constituted by all 
possible attack modes for a network is { }1 2, ,AT at at= …  where iat  represents the number i  type of 
attack mode. If ( )iR at  is the value of robustness measurement calculated by formula (1) with the 
attack mode iat , then the comprehensive robustness measurement of the network is defined as 

I min ( )
i

iat AT
R R at

∈
= .      (2) 

Considering that the random node attack, degree priority node attack and betweenness priority 
node attack are commonly used attack modes, this paper constructs the set AT  with these three 
kinds of attack modes. 

3 Framework for Robustness Analysis of Complex Networks 
The structural parameters of a network, such as the degree distribution, the average clustering 

coefficient and the shortest path length et al., determine the structure of the network together under 
the condition that the number of nodes and the number of edges of the network are decided. Since 
the degree distribution of a network has relatively large impact on the structure of the network [17], 
the influence that the degree distribution has on the upper bound of the robustness measurement of 
the network needs to be analyzed first. The effect that other structural parameters of the network 
have on its robustness is analyzed then with a fixed degree distribution. The framework proposed 
for  robustness analysis of complex networks is shown in Fig. 2. 
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Figure 2.  The framework for robustness analysis of complex networks. 

In Fig. 2, the zero-order zero-model is a set constituted by all the networks having the same number of 
nodes and edges. An one-order zero-model is a subset of the zero-order zero-model [18]. That is, networks 
in an one-order zero-model not only have the same number of nodes and edges, but also have the same 
degree distribution. The framework generates complex networks whose degree distributions are different 
through a variety of network build models first. Then it improves the robustness of these networks based on 
the optimization theory. Robustness improvement of a network is carried out within the one-order zero-
model of the network. The largest value of robustness measurement of the network is regarded as the upper 
bound of the robustness measurement of the network which has a fixed degree distribution. By comparing 
the upper bounds of robustness measurement of networks whose degree distribution are different, the 
framework analyzes the effect of the degree distributions on the robustness of a network. The optimization 
model established for the robustness improvement of a network is as below  

Imax
;

. . ;
( ) ;

R
N is const

s t M is const
p k is const

⎧
⎪
⎨
⎪
⎩

      (3) 

where IR  is the robustness measurement calculated by formula (2); N  is the number of nodes in the 
network; M  is the number of the edges in the network; ( )p k  is the probability of the occurrence of the event 
that the degree of a node is k . The optimization method for robustness improvement in the framework is 
used to solve the model. Since the degree distribution of a network remains the same during the process of 
the robustness improvement of the network, the effect of other structural parameters on the robustness of the 
network can be analyzed then. 

4 Optimization Method for Robustness Improvement of Complex Networks 
The methods to search better structures which result in better robustness performance of a network 

include simulated annealing, tabu search and so on. The difficulty of applying these methods to solve the 
model in formula (3) is how to set the parameters of these methods, such as how to control the temperature 
drop in the simulated annealing and how to decide the length of the tabu list in the tabu search. Compared 
with these methods, the variable neighborhood search is easy to be used for the way to set its parameters is 
simple [23]. Thus, the optimization method for robustness improvement of complex networks is designed 
based on the variable neighborhood search in this paper. 

The operation of reconnecting nodes while keeping their degree the same is adopted to remain the degree 
distribution of a network during the robustness improvement of the network. In detail, the operation choose 
two edges in a network, then reconnect nodes which are linked to the edges, which is show in Fig. 3. 
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Through this operation, new structures of a network can be obtained. The k -order neighborhood of the 
structure X  of a network is denoted by ( )kNH X  which is a set constituted by structures that can be 
generated through k  operations on the X . 

 
Figure 3. Rewiring nodes while keeping their degree fixed. 

The idea of the robustness optimization method based on the variable neighborhood search is as below. 
Suppose a network is given and the structure of the network is noted as X . Then search in the 

max2

1
1 1

( ), ( ), , ( )
l

l l
l l

NH X NH X NH X
= =
∪ ∪…   to find which structure will improve the robustness of the network. If a 

better structure 'X  is found, then search the neighborhood of 'X . Repeat the above steps until no better 
structures can be found during continuous several iterations. The detailed steps of the optimization method 
for robustness improvement are as follows. 

Step 1. Initialize a network. The structure of the network is noted as X . Set the parameters max max,l c . 
Step 2. Set a counter 1c ← . 
Step 3. Whether maxc c≤  ? If yes, set a counter 1l ←  and go to step 4. If not, the search process ends and 

input the structure X . 
Step 4. Whether maxl l≤  ?  If yes, go to step 4.1. If not, set 1c c← +  and return to step 3. 

Step 4.1. Select a structure 'X  from 
1

( )
l

k
k

NH X
=
∪  randomly. 

Step 4.2. Whether I I( ') ( )R X R X≥  ? If yes, set ', 1, 1X X l c← ← ← . If not, set 1l l← + . Return to step 4. 
The problem of how to set parameters max max,l c  in step 1 is discussed as below. Suppose there are two 

networks A  and B . The number of nodes in A  and B  is N , the number of edges in them is M  and the 
degree distributions of A  and B  are the same. Then the structure of A  can change to be the same with that 
of B  through less than M  operations which reconnect nodes in A  while keeping their degree fixed.  That is, 
the set 

1
( )

M

l A
l

NH X
=
∪  where AX  represents the structure of  A  contains the structures of all the networks who 

has N  nodes , M  edges and a same degree distribution with that of A . Thus, the maxl  in step 1 can be set to 
the number of edges in the initial network so that the structure of any one network in the one-order zero-
model of the initial network will be explored with a probability which must not be zero. In step 3, that the 
formula max 1c c= +  holds means the method dose not found a better structure after continuous max maxl c⋅  
iterations. If the search process will be ended after continuous m  iterations during which a better structure is 
not found, then the maxc  should be set to an integer that is not smaller than max/m l  where the m  is usually set 
to 10000. 

5 Relationship Between Structures and Robustness of Complex Networks 
This section analyzes the robustness of complex networks with the proposed framework. The input 

information of the framework includes types of zero-order zero-models of complex networks, types of 
network build models and structural parameters of networks. The information of types of zero-order zero-
models of networks is shown in Table 1 where the network size represents the number of nodes in a network 
and network density represents the ratio of the number of edges to the number of nodes in a network. 

The information of network build models is shown in table II. The small-world network model is realized 
through the operation of reconnecting nodes in a nearest neighbor ring network. The probability of 
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reconnection is 0.1 in this paper. Since the probability is small, the degree of each node in a network 
generated by the small-world model is still relatively consistent [24]. 

Table I. Zero-order zero-modle of networks 

number 1 2 3 4 5 6 7 8 9 
network size 50 50 50 100 100 100 200 200 200 

network density 2 3 4 2 3 4 2 3 4 

Table II. Networks build models 

type nearest neighbor ring 
network model 

random  
network model

small-world 
network model

scale-free 
 network model 

degree distribution  
of networks generated 

single point  
distribution 

Poisson  
distribution 

exponential 
 distribution 

power-law 
 distribution 

Commonly used structural parameters of a network include average clustering coefficient, network 
efficiency, natural connectivity and algebraic connectivity. The average clustering coefficient reflects the 
degree of collectivization among nodes in a network [25]. If the number of nodes in a network X  is N , then 
the average clustering coefficient (CC) is defined as 

21
( 1)

i

i X i i

e
CC

N g g∈

=
−∑      (4) 

where ig  is the degree of node i  and ie  is the number of edges that are between neighbor nodes of node i . 

The network efficiency (NE) reflects the distance between the nodes in the network [26], which is 
defined as 

, ,

1 1
( 1) i j X i j ij

E
N N d∈ ≠

=
− ∑      (5) 

where ijd  is the number of edges in the shortest path between node i  and node j . If there is no one path 
between node i  and node j , then ijd = ∞ . 

The natural connectivity (NC) reflects the degree of redundancy of edges in the network [11], which is 
defined as 

1

1ln( )i

N

i
NC e

N
λ

=

= ∑      (6) 

where 1 2, , , Nλ λ λ…  are the N  characteristic solutions of the adjacency matrix of the network. 
The algebraic connectivity (AC) reflects the community property of the network [27], whose value is the 

second smallest characteristic solution of the Laplace matrix corresponding to the network. 
Firstly, the influence of the degree distribution on the robustness of a network is analyzed according to 

the framework. The results are shown in Figure 4 in which the data are average values from a variety of 
experiments. 
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(a) Initial networks generated by network build models                  
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(b) networks after optimization  
Figure 4. Impact of degree distribution on robustness of networks. 

From the Fig. 4(a), it can be seen that the robustness of networks with Poisson degree distribution is the 
best, the robustness of networks with exponential degree distribution and power-law degree distribution 
follows and the robustness of networks with single point degree distribution is the worst. After optimization, 
robustness of all the networks is improved. It can be seen in Fig. 4(b) that the robustness of networks with 
single point degree distribution is the best, the robustness of networks with exponential degree distribution 
and Poisson degree distribution follows and the robustness of networks with power-law degree distribution 
is the worst. This phenomenon indicates that the closer the degree distribution of a network is to the single 
point distribution, the larger the upper bound of the robustness measurement of the network is. 

The next work is to analyze the effects of other structural parameters on the robustness of networks. It is 
found that there exist significantly regression relationships between the robustness of a network with the 
single point degree distribution and its structural parameters, which are shown in Fig. 5 (Due to space limit, 
results in the zero-order zero-models of the number 5 and 8 in Table I are given). The regression 
relationships between the robustness of a network with the exponential degree distribution and its structural 
parameters are not very evident as shown in Fig. 6. In addition, no obvious relationships can be found 
between structural parameters and the robustness of networks with Poisson degree distribution and power-
law degree distribution, which are shown in Fig. 7 and Fig. 8. All parameters in the figures have been 
normalized. 
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(a) The number 5 of zero-order zero-model of network                  
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(b) The number 8 of zero-order zero-model of network  
Figure 5. Networks with one-point degree distribution. 
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(a) The number 5 of zero-order zero-model of network                    
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(b) The number 8 of zero-order zero-model of network  
Figure 6. Networks with exponential degree distribution. 
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Figure 7. Networks with Poisson degree distribution.                Figure 8.Networks with power-law degree distribution  

The results indicate that the more consistent the degree of each node in a network is, the more evident the 
regression relationships between the robustness of the network and its structural parameters, such as the 
average clustering coefficient, the network efficiency et al., is. It is usually considered that the larger the 
natural connectivity of a network is, the better the robustness of the network is [11]. But the results in Fig. 5 
and Fig. 6 show the viewpoint is not always right, which demonstrate the complexity of complex networks 
once again. 

6 Discussion 
A conclusion is made in Section 5 that the closer the degree distribution of a network is to the single 

point distribution, the larger the upper bound of the robustness measurement of the network is. Suppose 
there are N  nodes and M  edges in a network X . The quotient and the remainder of M  divided by N  are 
noted as Q  and S  separately. If S  is zero, then the degree distribution of the structure of X  can be design 
to the single point distribution with the purpose to increase the upper bound of the robustness measurement 
of X . If S  is not zero , which means that the degree distribution of the structure of X  will not be the single 
point distribution, then the strategy for increasing the upper bound of the robustness measurement of X  is to 
make the degree of each node in X  as same as possible. The method to realize the strategy is as follows. 
First construct a nearest neighbor ring network of which the number of nodes is N  and the number of edges 
is M . Then select N S−  nodes in the network randomly and delete the edges between the nodes chosen and 
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their anticlockwise first neighbor node. Finally, a network having N  nodes and M  edges is gained, which is 
shown in Fig. 9. Through this method, the degree of every node in the network is not larger than 2 2Q +  and 
not smaller than 2Q . That is, the degree distribution of the structure of the network is two-peak distribution 
or three-peak distribution. Valente et al. pointed out that a network with two-peak degree distribution or 
three-peak degree distribution had better robustness performance [7]. Thus, the correctness of the 
conclusion made in this paper  is demonstrated to a certain degree based on [7]. 

 
Fig. 9. Construction method. 

7 Conclusions 
This paper analyzes the relationship between the structures of complex networks and their robustness. 

The main work of this paper is as follows. First, we improve the robustness measurement of a complex 
network based on the analysis of the disadvantages of traditional robustness measurements. Then, we 
propose a framework for robustness analysis of complex networks based on optimization theory. The 
framework evaluates the influence of the degree distribution and other structural parameters of a network on 
its robustness within the zero-order zero-model and one-order zero-model of this network. Thirdly, we 
design the robustness optimization method based on the variable neighborhood search and discuss the way 
to set the parameters of this method. The method is not only simple to use but also can solve robustness 
optimization problem of complex networks well. Finally, through the framework proposed, it is found that 
the more consistent the degree of each node in a network is, the larger the upper bound of the robustness 
measurement of the network is. In addition, the more consistent the degree of each node in a network is, the 
more evident the regression relationships between the robustness of the network and its structural 
parameters, such as the average clustering coefficient, the network efficiency et al., are. These findings have 
positive referenced significance for network design et al. 
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