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Abstract. We have calculated the circumference ratio by Monte Carlo method and Buffon’s Needle 

algorithm. Our results reveal that the estimated value approaches to the expected value as the Monte 

Carlo steps increase. The error between the estimated and the expected values decreases inversely as 

the square root of MCS increases. When MCS reaches 1010, the error is only one part per million of 

the expected value. 

1 Introduction 

Monte Carlo method is a powerful simulation method based on random number and statistics [1]. As 

well known, many physical processes occur randomly in real world, e.g. the decay of nucleus, the 

transportation of particles in media as well as the Brown movement of molecules.  In 1777, G.L.L. de 

Buffon, a famous mathematician, proposed the famous Needle Problem to calculate the 

circumference ratio. With the emergence of computer science, von Neumann, a famous 

mathematician, proposed a new method based on random number, to simulate the collisions between 

neutrons and nucleus which resulted in the nucleus reaction [2]. Von Neumann named this method 

Monte Carlo, which is the name of gambling city in Mexico. Monte Carlo method has many important 

applications in the teaching of simulation. For instance, Monte Carlo method can be used to simulate 

the problems of the transport of articles in media [2], magnetic phase transition [3,4,5], 

high-dimensional mathematic integral, engineering and economics. Random number is most 

frequently used in Monte Carlo simulations. In the simulations, random number must satisfy the 

following requirements, that is, it must be conveniently and quickly generated, and it must be 

homogeneous in distribution. Moreover, it should be independent and non-correlated. Convenience 

means that random number must be generated quickly and not consume much computing time. 

Homogeneous distribution means that random number should be distributed in the region 

homogenously. Independence means that random number must not be correlated. Only satisfying the 

above requirements, does random number work well in simulation. In this article, we employ Monte 

Carlo method to simulate the circumference ratio and study the convergence behavior of simulation 

with increasing Monte Carlo steps. 

2 Methods 

 Random number is generated through certain mathematic expression. Usually, random number is 

generated via the following equation. 

       1 ( )mod( )n nx ax c m                                                                                            (1) 

        /n nx m                                                                                                              (2) 

In the above equation, mod( )C A B means the remainder generated in the operation of A divided 

by B. 0x is the seed of random number. If one changes the seed of random number, then a new series 

of random number can be generated. 0, ,a c x and m are the integers larger than zero, and are called 

multiplier, increment, initial value and module. 
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 The foundation of Monte Carlo simulation is the law of large numbers and central limit theorem. 

According to the law of large numbers, if one randomly samples n numbers from the region [a,b] with 

homogenous probability and calculate the values of corresponding function ( )ih u , the average value 

of function should converge to the expected value through the following equation 
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According to the law of larger numbers, if we sample enough function values, the estimated 

function value should converge to the expected value.  

 The central limit theorem tells that no matter how the random variable is distributed, the 

summation of total random variables must satisfy the canonical distribution, that is, 
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In the above equation,  is the expected value and 2 is variance. According to the central limit 

theorem, the difference between expected value and estimated value should satisfy the following 

equation 
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                                                                                                         (5) 

According to the central limit theorem, the error between the estimated value and the expected 

value should inversely decrease as N increases.   

3 Simulation results 

According to the Buffon’s Needle Problem, the circumference ratio can be calculated through the 

following way. As shown in Fig. 1, the needles are thrown with equal probability and they cover the 

square homogeneously. If we count the numbers of needles fallen in the quarter of circle, we can get 

the area ratio of the quarter circle to the square.  
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  Fig. 1: Scheme of the Needle Problem. The black points are the needles thrown with equal 

probability. The black arc is the quarter circle.  

 

The Needle Problem can be realized via the following algorithm. (i) A pair of random numbers 

( , )n nx y  are generated, with (0,1)nx  , (0,1)ny  .  (ii) The value of 2 2

n nx y  is calculated. If the value 

is less than 1.0, the needle point fell into the arc and the count of needle fallen into the arc increases 

one. (iii) The total number of needles n fallen into the arc is calculated and the ratio of needles fallen 

into the arc to the total thrown needle satisfies lim
4N

n

N




 . Our simulation results are listed in table 1.  
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Table 1: The estimated value of circumference ratio for increasing Monte Carlo steps. 

N  10
3
 10

4
 10

5
 10

6
 10

7
 10

8
 

 （1） 3.0720 3.1756

0 

3.1359

2 

3.1436

4 

3.1402

1 

3.1414

7 

 （2） 3.2000 3.1492

0 

3.1407

2 

3.1402

1 

3.1419

3 

3.1413

8 

 （3） 3.0720 3.1728

0 

3.1418

8 

3.1411

4 

3.1416

2 

3.1418

5 

 （4） 3.1240 3.1660

0 

3.1410

8 

3.1428

8 

3.1416

8 

3.1415

5 

 （5） 3.1520 3.1320

0 

3.1363

2 

3.1407

0 

3.1415

7 

3.1415

3 

 （6） 3.0520 3.1292

0 

3.1404

8 

3.1405

6 

3.1418

1 

3.1415

7 

 （7） 3.1800 3.1208

0 

3.1361

6 

3.1435

4 

3.1410

1 

3.1416

1 

 （8） 3.1080 3.1516

0 

3.1374

4 

3.1465

5 

3.1419

8 

3.1413

9 

 （9） 3.0960 3.1492

0 

3.1374

0 

3.1382

5 

3.1411

8 

3.1415

6 

（10） 3.0640 3.1488

0 

3.1381

6 

3.1431

2 

3.1425

2 

3.1418

5 

  3.1120 3.1495

2 

3.1385

56 

3.1420

59 

3.1415

50 

3.1415

75 

 

It is noticed that the estimated value of circumference ratio approaches to the expected value as the 

Monte Carlo steps (MCS) increases. When MCS reaches 10
9
, the estimated value gets to 3.141588. 

For MCS of 10
10

, the estimated value reaches 3.1415974, which is very close to the expected value 

3.1415926.  

  The error of estimated value versus MCS is shown in Fig. 2. It is noticed that the error decreases 

inversely as N increases. We fit the data points by power law /y a N and find the 

parameter 0.923a  . 
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Fig. 2: Simulation error versus N .The circles are the data points of error. The curve is the 

theoretical fit.  

4 Conclusions 

We calculate the circumference ratio by Monte Carlo method and Buffon’s Needle scheme. Our 

results reveal that the estimated value approaches to the expected value as MCS increases. The error 
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of estimated value inversely decreases as the square root of MCS increases. When MCS reaches to 

10
10

, the error of estimated value is one part per million of the expected value.  
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