

A"validation"of"SonarQube"issues"related"to"real"bugs"based"on"open"
source"software"

Xiang&Hou1,Yao&Lu1,Yiang&Gan1,&Mengwen&Chen1,Tao&Wang1,Gang&Yin1&
1National&Laboratory&for&Parallel&and&Distributed&Processing,&

1National&University&of&Defense&Technology&
1Changsha,&China&

nudt_houxiang@163.com,&839377654@qq.com,&ganyiang@outlook.com,&
chenmengwen1991@126.com,&taowang.2005@outlook.com,&jack_nudt@163.com&

Keywords:&Bug&DetectionV&Source&Control&SystemV&SonarQubeV&JavaV&Git!

Abstract. High reliability is an essential factor of modern software. At the same time, as software
complexity is increasing day by day, bug counts and rate inevitably rises, leading to undermine
software reliability. To avoid this problem, programmers always use issue-finding tools (bug
detection) to discover the defects from source code in development of software. Recently, software
inspection has been shown to be an effective way to speed up the process of source code verification
and to move a portion of discovered defects from test to coding phase. As we know, modern software
is often developed over many years. During this time, the commit metadata is becoming an important
source of social characteristics. In this paper, our aim is to devise an empirical method to assess the
percentage and the types of the issues found by issue finding tools are actual defects of the software.

1 Introduction

We always perform automatic static analysis on source code with different goals: improve
important maintainability of code, check a standard compliance or detect possible defect. Sonarqube
can find all violations of reasonable, bugs and bad software design pattern. After we use sonar to scan
the source code, sonar will list all violations about the source code (we call the violations issues, that
have the possibility to become a defect of the software). The issues reported by sonar are violations of
correct programming patterns in coding process. So after we collected the issues from sonarqube, we
can devise a method to predict the possibility that if the issue would be an actual defect.

So in this paper, we study the social characteristics of modern software development and the effect
of sonarqube to understand the relation between issues that found by sonarqube and actual defects. To
study the correlation between the actual defects and issues, we get top100 java projects from github
which are controlled by git and use sonarqube to scan these projects to get the issues.

2 Experimental methods

The source code of modern software is always hosted by source control system. In our experiment,
we got top 100 java projects from github. These projects always have hundreds of thousand commits
in commit history. To study the correlation between sonar issue and defect of source code, we need to
find all bug-fixing commits and their related bug introducing commits in the commit history. So we
have to analyze the commit metadata of a project to locate all bug-fixing commits. In our experience,
most developers indicate that a commit is to fix defect by including the keyword ”fix” in the commit
message. Depend on the bug-fixing commit, we can confirm the specific line of code that is fixed and
we can trace back to the bug-introducing commit, so we can mine the version control history (as
implemented by the “git blame” command) to discover when the corresponding bugs were introduced.
For the record, the bug-introducing commit may not introduce the real bug to the source code of
software; it is possible to update the code for the third-party code or modify the bad software design
pattern. After that, we perform automatic static analysis (like sonarqube in this paper) on the
bug-introducing version and the bug-fixing version respectively.

Joint International Information Technology, Mechanical and Electronic Engineering Conference (JIMEC 2016)

© 2016. The authors - Published by Atlantis Press 552

Core methodology
Our methodology has three main steps:
1)& Locate all bug-fixing commits and their related bug-introducing commits, then store the result

into mysql.
2)& Use sonar to scan projects respectively in bug-introducing version and bug-fixing version of

source code, then collect sonar issues from database of sonarqube.
3)& Account the type and percentage of sonar issue accompanied by the disappearance of bug.

Let me describe three steps in detail. Firstly, to detect the bug-fixing commit and its related
bug-introducing commit, we collect top 100 java projects which are controlled by git from github. Git
is a free and open source distributed version control system designed to handle everything from small
to very large projects with speed and efficiency. Most programmers who use git to handle software
development will contain the fix message in the commit message when they fix the bug. So we
confirm the commit is a bug-fixing commit through mining the fix message in the commit message.
We can search all commit messages for the keyword ”fix” to find bug-fixing commit.

commit bd963bca14d8ec…..

Author: Nathan Marz <nathan@twitter.com>
Date: Tue Oct 23 23:43:34 2012 -0700

fix bug in Cluster
diff --git a/src/jvm/… b/src/jvm/…
index b94bfdd..d268831 100644

a/src/jvm/backtype/storm/scheduler/Cluster.java
+++ b/src/jvm/backtype/storm/scheduler/Cluster.java

- if (!this.supervisors.containsKey(host))
+ if (!this.hostToId.containsKey(host))

Figure 1. An example bug-fixing commit

There is an example of bug-fixing commit in Figure 1. We can find that a bug-fixing commit is
consisted of a commit id; an author, identified by a name/email address pair; a commit message, which
contains the keyword “fix”; and a diff, showing the lines this commit changed. Depend on the
information of the bug-fixing commit, we can compute diffs for each version of the source code of the
project. Because we can get the information about the modified code and the changed file address in
the bug-fixing version of source code. We can use the “git blame” command to search the repository
metadata to identify the bug-introducing commit. So we can switch to bug-fixing version of source
code and get the file address and line of the code modified in the bug-fixing version. Finally, we obtain
the bug-introducing message from the bug-fixing commit.

1faa92e4

(James Xu 2012-05-18 17:34:17 +0800 36)
if(!this.supervisors.containsKey(host))

Figure 2. git blame output for the bug-fixing commit

There is a plausible “git blame” output in Figure 2 which shows that who and when introduced the
code in which commit.

commit 1faa92e45....

Author:JamesXu <xumingming64398966@gmail.com>
Date: Fri May 18 17:34:17 2012 +0800

implement the scheduler mechanism for storm

….
if (!this.supervisors.containsKey(host)) {

Figure 3. Related bug-introducing commit

553

Figure 3 shows that we found the bug-introducing commit and then we can store the bug-fixing
commit and bug-introducing commit into our database. If one bug-fixing commit is related to many
bug-introducing commits, we can store all of these bug-introducing commits into our database.

The all process of bug-finding algorithm is like this:

commit 3

Bug #42233
was reported

a() was
changed

b() was
changed

c() was
changed

Fixed Bug
#42233

Changed:
a(), b(), c()

commit 1 commit 2

commit 4

Figure 4. bug-finding process

After we got all bug-introducing commits and their related bug-fixing commits of the source code,
we can use sonarqube to assess the quality of the source code respectively at the bug-introducing
version and bug-fixing version.

Figure 5. Process of SonarQube Accessing the Project

Finally, because the goal of our experiment is to verify which sonar issues are related to actual
defects on source code and which are not, we have to find a criterion to check the relation between the
sonar issue and actual defects. We believe that when one or more issues disappear in the evolution
from the bug-introducing version to the bug-fixing version, and the issues were found at the same
position with the bug, it’s very likely these sonar issues are related to the fixed bug.

3 Results

 So in this section we will present the result from carrying out by our methodology. We have
performed our bug-finding algorithm on all top 100 java projects, after that it produced a large
collection of defection: 112477 bug-fixing commits have been found by our bug-finding algorithm,
each bug-fixing commit is related three to ten bug-introducing commits on average, then depend on
these commits, we use sonarqube to scan the source code on bug-introducing version and bug-fixing
version respectively to get the quality of source code, as well as we collected a large number of issues
about the source code from sonarqube. We find out that 20% of all issues have co-occurrence relations
with bugs that we found. These issues above who have the co-occurrence relations with bugs have a
possibility to become an actual defect in the development of project. So when we use sonarqube to
check the quality of source code, we need to pay attention to these issues above in case they become
actual defects.

4 Conclusions and Future Work

We obtained that 4 kinds of sonarqube issues have the higher possibility to become the actual
defects. The main contributions of this work are: We devise a bug-finding algorithm to mine the

554

social characteristics of the modern software development to confirm the bug-introducing version
and bug-finding version of source code, and we provide an empirical method to validate if some sonar
issue are actual defect. We can pay attention to these sonar issues to avoid the bug in development and
then decrease the bug count and rate of modern software. Our future work will be devoted to open
source projects written by other languages.

Acknowledgment

This work is supported by the National Natural Science Foundation of China (Grant No.61432020
and 61472430).
References

[1] Vetro, Antonio, Maurizio Morisio, and Marco Torchiano. "An empirical validation of FindBugs
issues related to defects." Evaluation & Assessment in Software Engineering (EASE 2011), 15th
Annual Conference on. IET, 2011.

[2] Eyolfson, Jon, Lin Tan, and Patrick Lam. "Do time of day and developer experience affect commit
bugginess?." Proceedings of the 8th Working Conference on Mining Software Repositories. ACM,
2011.

[3] Ayewah, Nathaniel, et al. "Using static analysis to find bugs." Software, IEEE25.5 (2008): 22-29.

[4] Mizuno, Osamu, and Michi Nakai. "Can faulty modules be predicted by warning messages of
static code analyzer?." Advances in Software Engineering 2012 (2012): 4.

[5] Subramanyam, Ramanath, and Mayuram S. Krishnan. "Empirical analysis of ck metrics for
object-oriented design complexity: Implications for software defects." Software Engineering, IEEE
Transactions on 29.4 (2003): 297-310.

555

