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Abstract—This paper examines hub location and scheduling of 

planes for an express company. Two Mixed Integer 

Programming (MIP) models are constructed for this problem, 

restricted model (RM) and extensible model (EM). The 

comparison between the two models shows that the first one 

performs better than the existing models in terms of solution 

time, while the second one with different variable definition 

may further reduce the total cost by allowing more visiting 

hubs for serving an O-D pair. Due to the NP-hardness of the 

problem, a two-stage hybrid algorithm is developed to solve the 

large-scale instances. Numerical experiments are conducted to 

test the performance of the algorithm. 

Keywords-air-cargo; vehicle; hub-and-spoke; airline; hub 

location. 

I.  INTRODUCTION 

With the increasing aerial freight volume, outsourcing 
cannot fully satisfy the requirement of the express company. 
In order to deliver the goods timely and take advantages of 
the economies of scale, more and more express companies 
begin to combine the self-owned planes and outsourcing. 
Thus, coordinating the self-owned planes with outsourcing to 
meet all service demands in a short time is a challenge. 

The aerial freight scheduling is often turned into a 
problem associated with the Hub Location Problem (HLP) 
which was first put forward by Hakimi [1]. Later, Toh and 
Higgins [2] applied the hub location problem to the aerial 
transport industry in which the high no-load rate of trips was 
discussed and an alternative solution by introducing hubs and 
using smaller-capacitated planes was suggested in order to 
decrease the operation cost. The first mathematical 
formulation and solution method based on the HLP were 
given by O’Kelly [3,4, 5]. Since O’Kelly’s formulation is 
quadratic, Campbell [6] developed a linear mathematical 
formulation with p-hub median location problem (p-HMLP). 
Later, Ernst and Krishnamoorthy [7] proposed a 0-1 
formulation to the p-HMLP. In the above work, each demand 
service with an original node and a destination node (called 
an O−D pair for short) is required to go through a path with 
exactly two hubs. Later, lots of work has been done based on 
the p-HMLP model. In this paper, the situation that the 
transportation volume of an O−D pair can be assigned to 
several paths has not been considered, and the capacity of 
hub nodes is pre-specified as given, which is different from 
the reality however. 

This paper attempts to integrate the hub location and the 
scheduling of air cargo planes, and solve them in a single 

model. Sender and Clausen [8] is one of the few papers that 
constructed an MIP model to handle this integrated problem. 
The model, however, takes a long time to get the optimal 
solutions without an efficient algorithm. In this paper, a more 
efficient model, which requires less variables and constraints 
than Sender and Clausen, is provided. Moreover a 
competitive algorithm is also developed for large-scale 
instances. The remainder of this paper is organized as 
follows: two formulations are constructed in section 2; a 
hybrid algorithm for the formulation is given in section 3; 
numerical experiments are conducted in Section 4; and the 
conclusions are drawn in Section 5. 

II. PROBLEM FORMULATION 

This problem is to select a set of hubs from dispersed 
candidate nodes, assign O−D pairs to hubs in order to route 
the demand of each O−D pair through the network, and at 
the same time deploy or outsource the airplanes to engine the 
network, with the objective of minimizing the total cost 
including the hub setup cost and transportation cost. The 
constraints mainly include: the flow conservation constraint, 
the transportation capacity constraint, and the restriction on 
the number of self-owned planes. The related assumptions of 
this problem are presented as follows: 

1) Only the nodes that provide transfer service can be 
seen as a hub;  

2) Self-owned plane is required to go back to its original 
node at the end of the planning horizon, while the 
outsourcing planes do not have this kind of requirement;  

3) The demand volume of each O−D pair can be assigned 
to multiple paths which connect O and D but via different 
hubs. 

A. Model 1: The Model with Restriction on the Number of 

Visiting Hubs (RM) 

In the following, we will present an MIP model in which 
the number of hubs for an O–D pair is restricted to no more 
than two for each path connecting O and D. The related 
notations are presented as follows: 

Input parameters: 

L  the set of plane types indexed by l . Index 
0l

 

represents the outsourcing plane. 
ln  the number of self-owned l -type planes. 

lp  the capacity of l -type plane. 

N  the set of nodes indexed by i , j , O  and D . 
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if
 the operational cost for node i  if it is set up as a 

hub. 

ijh
 1, if there are no commercial direct flights between 

nodes i  and j ; 0, otherwise. 

ijd
 the average flight time between nodes i  and j . 

ODd  the demand from node O  to node D . 

l

ijc
 the unit-time transportation cost of using a l -type 

plane from node i  to node j  

M   a sufficiently large positive value. 

Decision variables: 

iY  1, if node i  is set up as a hub; 0, otherwise. 

OD

ijX  the flow amount of the O−D pair assigned to link i
→ j  whose immediately previous node is O and 

whose immediately following node is D. 
l

ijR  the number of l -type planes assigned to link i →

j . 0l

ijR  interprets that of outsourcing. 

The formulation is given as follows. 

 min l l

i i ij ij iji
l i j

f Y c d R    (1) 

 , , , , ,OD

ij iX MY O D i j N i O      (2) 

 , , , , ,OD

ij jX MY O D i j N j D      (3) 

 , ,OD OD

iji j
X d O D N      (4) 

   , ,
OD im kj l l

jk mi ijO D k m lij
X X X p R i j N          (5) 

 0 0, , , , 0
l

ij ijR i j N where h      (6) 

 0, , , , ,l l

ij jiR R i j N l L where l l       (7) 

 0, , , ,l l

iji j
R n l L j i where l l        (8) 

 0, , ,OD

iOX O D i N     (9) 

 , ,OD OD

Oj ODj
X X O D N     (10) 

 0, , ,OD

DjX O D j N     (11) 

 , ,OD OD

iD ODi
X X O D N     (12) 

In the formulation, the object function (1) is to minimize 
the total cost including the operation cost of employed hubs 
and the transportation cost of self-owned and outsourcing 
planes. Constraints (2)-(3) indicate that any transfer node 
within a path should be a hub, which corresponds to 
Assumption 1. Constraints (4) guarantee each O−D pair 
demand should be satisfied. Constraints (5) make sure that 
the total capacity of employed planes should not be violated. 
Constraints (6) mean that no outsourcing can be applied for 
the link without commercial direct flight. Constraints (7) 
correspond to Assumption 2. Constraints (8) restrict the 
number of self-owned planes that can be allocated. 
Constraints (9)-(12) confine some variables without physical 

meaning equal to zero. The constraints for defining variable 
range are omitted in this paper. 

This model will encounter application difficulty when 
more number of transfer times is needed. Therefore, a more 
general model, which can accommodate more hubs for each 
O-D pair, will be proposed in the next section. 

B. Model 2: The Model with the Number of Visiting Hubs 

Controllable (EM) 

All notations presented in Section A will be used in this 

section except for 
OD

ijX , which will be replaced by 
OD

ijW . 

The specific explanations are given in the following: 
Additional input parameters: 
t the maximum number of visiting hubs in each path 
for serving the O−D pair. 
Additional decision variables: 

OD

ijW

 

the flow amount of the O−D pair assigned to link

i j . As opposed to
OD

ijX , it does not require that 

the immediately previous node of link i j  be O 

and the immediately following node be D. It only 
means the flow amount of the O−D pair that passes 

through link i j . 
OD

ijZ

 

1, if the link i j  is used by O−D pair; 0, 

otherwise. 

OD

iS

 

the sequence number of node i  visited by O−D 
pair. 

The formulation is presented as follows. 

 min l l

i i ij ij iji
l i j

f Y c d R    (13) 

 , , , , ,OD

ij iW MY O D i j N i O      (14) 

 , , , , ,OD

ij jW MY O D i j N j D      (15) 

 , , , , , ,OD OD

ik kji j
W W O D k N where k O k D        (16) 

 , ,OD OD

Ojj
W d O D N     (17) 

 , ,OD OD

iDi
W d O D N     (18) 

 , ,OD l l

ij ijO D l
W p R i j N       (19) 

 0 0, , , , 0
l

ij ijR i j N where h      (20) 

 0, , , , ,l l

ij jiR R i j N l L where l l       (21) 

 0, , , ,l l

iji j
R n l L j i where l l        (22) 

 , , , ,OD OD

ij ijW MZ O D i j N     (23) 

  1 1 0, , , ,OD OD OD

i j ijS S M Z O D i j N         (24) 

 0, ,OD

OS O D N     (25) 

 1, ,OD

DS t O D N      (26) 

 0, , ,OD

iOW O D i N     (27) 
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 0, , ,OD

DjW O D j N     (28) 

 0, , ,OD

kkW O D k N     (29) 

In the formulation, the objective function (15) is the same 
as the objective function (1). Constraints (16)-(17) indicate 
that any transfer node within a path should be a hub, which 
corresponds to Assumption 1. Constrains (18) are the flow 
conservation constraint. Constraints (19)-(20) guarantee that 
the outflow volume from the source is equal to the inflow 
volume to the sink, both of which are equal to the demand 
volume of the corresponding O−D pair. Constraints (21) 
make sure that the total capacity of employed planes should 
not be violated. Constraints (22) mean that no outsourcing 
can be applied for the link without commercial direct flight. 
Constraints (23) correspond to Assumption 2. Constraints 
(24) restrict the number of self-owned planes that can be 

allocated. Constraints (25)-(26) show that if 0OD

ijW  , the 

inequality 1OD OD

j iS S   holds. Constraints (27)-(28) ensure 

that any path could not visit more than t hubs. Similar to the 
previous, constraints (29)-(31) confine some variables 
without physical meaning equal to zero. Similar to the 
previous, the constraints for defining variable range are 
omitted in this paper. 

III. GREEDY DEMAND PAIR HYBRID ALGORITHM 

Due to the NP-hardness of p-HMLP [9], in the following, 
we will develop a hybrid algorithm called greedy demand 
pair hybrid algorithm (GDPHA), which includes two stages. 
The basic idea of this algorithm is to assign the self-owned 
planes in the first stage and then solve the modified model 
with fixed assignment of self-owned planes in the second 
stage by commercial solver package such as CPLEX. The 
specific procedure is presented as follows: 

Step 1: Set a search parameter F  and threshold valueV ; 
Step 2: Sequence the plane list in an increasing order of 

the plane's unit cost; 

Step 3: For every g  in interval  max0, /f F  

Step 3.1: Calculate 'ijd  for each link i j , where 'ijd

the allocating demand for a set of is links which are close 

enough to link i j ; 

Step 3.2: 1ija  , if ' l

ijd p ; else, 0ija  ; 

Step 3.3: Select the link with the longest flight time and 

satisfying 2ij jia a  , and then go to Step 3.4; otherwise, 

select the next g  and go back to Step 3.1; 

Step 3.4: If    /ij ji ij jiV CB CB CA CA   (where CB 

represents cost before allocating and CA represents cost after 

allocating), link  ,i j  is selected as a candidate link, and 

then select next g  and go back to Step 3.1; 
Step 4: Assign the plane 
Step 4.1: Select the link with the maximum value of 

   ij ji ij jiCB CB CA CA   
   from candidate links passed 

from Step 3; 
Step 4.2: The plane is assigned to the link selected in 

Step 4.1 and both ends of the link are set as the hub 
automatically. In addition, the consolidated O-D pairs 
included in the link will be assigned to the link, in an 
increasing order of the flight time, until the capacity of the 
plane is completely depleted. Update the remaining demand 
for each involved O-D pair. 

Step 5: Fix the plane assignment and the hub setting 
information and solve the modified model by CPLEX to 
generate a complete solution result. 

IV. NUMERICAL EXPERIMENTS 

In this section, two sets of experiments are conducted. 
The first one is to validate the advantage of the proposed 
models by comparing them with the Sender's formulation; 
another one is to test the performance of GDPHA. All 
experiments are coded by JAVA and run on a computer with 
a 16GB RAM and a 2.4 GHz CPU. 

The coordinates of all cities will be generated randomly 
within a 200 by 200 grid. It is assumed that the longest flight 
time in this grid is 300 minutes. The flight time between two 
nodes is proportional to their distance. Plane information is 
directly obtained from the express company. Whether there 
exists an airline depends on the type of cities and the flight 
time between them. Demand of link depends on the type of 
cities in both ends. 

A. Model Validation 

TABLE I shows the comparison results of three models. 
The variable number and constraint number increase as the 
city number increases, while the (RM) has the smallest 
number of variables and constraints among the three models 
although their optimal values are the same. It can also be 
seen that no more than two hubs are needed for each O-D 
pair. From the table, we also see that the runtimes of the 
Sender’s formulation are much larger than those of RM. It 
seems that RM outperforms others in terms of efficiency. 
Although extendable model (EM) does not show any 
advantage from TABLE I, it may show its value when more 
than 2 hubs are needed for serving an O-D pair. It can be 
seen from TABLE II which shows the computational results 
of another chain instance that EM has a significant 
improvement on cost when parameter t is more than 2.
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TABLE I.  COMPARISON RESULTS FOR RM, EM AND SENDER’S FORMULATION 

CN* 

Variable Number Constraint Number Objective Value Runtime[s] 

Sender RM EM Sender RM EM Sender RM EM Sender RM EM 

14 4494 350 350 7072 2684 23934 1213 1213 1213 91  22  162  

15 5224 409 409 8402 2804 29451 944 944 944 91  67  176  

16 6434 446 446 10306 3635 39822 1340 1340 1340 179  82  951  

17 7687 513 513 12361 4397 50357 1301 1301 1301 141  99  1035  

18 9312 600 600 14852 5588 67214 1757 1757 1757 30  46  376  

19 10720 669 669 17254 6224 84879 1826 1826 1826 205  128  1068  

20 12472 732 732 20122 7301 98814 1966 1966 1966 157  188  715  

21 14218 799 799 23102 8144 117489 2145 2145 2145 205  135  1201  

22 16300 878 878 26534 9361 138840 2151 2151 2151 1448  262  1201  

23 18583 965 965 30293 10699 160510 2497 2497 2497 577  249  1205  

* CN is city number. Each instance includes three big cities. 
 

B. Algorithm Validation 

In this section, we will test the performance of the 

GDPHA on large-scale instances for which the number of 

cities increase to 28, and more planes for each type are 

deployed. Parameters 2F  , 1.25V   are set for the 

subsequent experiments. TABLE I II shows the statistics 

result of 20 large-scale instances solved by CPLEX and 

GDPHA within 1200 seconds. It can be seen from the table 

that GDPHA can in most instances provide a better solution 

than CPLEX, which means the heuristic algorithm performs 

well. TABLE I V shows the statistics run time of another 50 

instances. We can find GDPHA have a better time 

efficiency. These two dimensions show that GDPHA has 

advantages over CPLEX in terms of both solving quality 

and time efficiency. 

TABLE II.  RESULT OF CHAIN INSTANCE 

Model Parameter Optimal Value GAP 

RM - 139.94 13.58% 

EM t=3 123.2 0% 

EM t=6 123.2 - 

TABLE III.  COMPARISON RESULTS FOR CPLEX AND GDPHA 

 
Average Optimal Value  Better Ratio  

CPLEX 2384.96 20% 

GDPHA 2293.84 80% 

TABLE IV.  STATISTICS OF 50 INSTANCES’ RUNTIME 

 

(0, 

600] 

(600, 

1200] 

(1200, 

1800] 

(1800, 

2400] 

(2400,  

infinite) 

Average  

Runtime[s] 

GDPHA 0 38 12 0 0 1011.023 

CPLEX 0 14 20 12 4 1628.961 

V. CONCLUSION 

This paper focus on air express companies air-cargo 

problem. An enhanced model of p-HMLP, RM, can provide 

a satisfied solution in shorter time, while an extensible 

model is developed to balance both time efficiency and cost 

efficiency. Related results have been proved by some 

instances. Meanwhile, this paper gives an effective hybrid 

algorithm to solve large-scale instance. Compared with the 

result of ILOG CPLEX, GDPHA could provide a better 

solution with higher time efficiency in some instances. 

Future work along this line of research will be focused on 

changing assumptions. Moreover, new algorithm will be 

approached to solve extensible algorithm. 
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