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Abstract—The paper presents two robust models to solve the 
location-inventory problem occurring in the emergency grain 
depots (EGD) when demands are uncertain. The proposed 
model simultaneously determines the location of EGDs, the 
grain inventory at each employed EGD and the allocation of  
grain among emergency sites, with the objective of minimizing 
the system-wide cost which includes EGDs construction cost, 
grain inventory cost and grain transportation cost. Firstly, a 
mixed integer programming model is built for the 
deterministic problem. Secondly, two robust optimization 
models are established for the case when the demand volume of 
grain in each emergency site is uncertain. The two robust 
models, respectively, correspond to the Soyster [1] robust 
optimization model which is dedicated to the worst case, and 
the budget optimization model which was proposed by 
Brtsimas & Sim [2] and has the advantage to control the 
robust level. Extensive numerical experiments are conducted to 
show the benefits of the two proposed robust optimization 
models. Interesting insights related to the problem are 
presented as well. 

Keywords-location-inventory; uncertainty; robust 
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I.  INTRODUCTION  
In recent years, unconventional emergency occurs 

frequently. It is of great significance for Chinese local 
government to optimize EGD construction and management. 
There are many uncertain factors in the EGD Location-
inventory problem. 

To capture the uncertainty in the emergency problem, 
Huseyin et al. [3] proposed a stochastic optimization method 
for the reserves and distribution in disaster cases. Carmen, 
Mark et al. [4] presented two stage stochastic mixed integers 
programming considering the uncertainty of hurricanes. 
Javier, Aruna [5] developed two stage stochastic 
optimization models to guide decisions before disaster. Araz 
et al. [6] proposed a fuzzy location model. The above 
researches on stochastic and fuzzy programming are limited 
in that:  

1) The probability distribution of uncertain parameters in 
stochastic programming is difficult to be known;  

2) Fuzzy programming has strong subjectivity to 
determine fuzzy membership function of uncertain 
parameters by a limited number of data samples and decision 
maker's experience. 

To address the challenges, the paper introduces two 
robust optimization models to deal with the uncertainty. The 
main contributions of the paper are summarized as follows:  

1) The paper introduces robust optimization models to 
the location-inventory EGD problem, in which the associated 

uncertainties are hard to quantify through probability 
distribution functions; 

2) We provide two different robust approaches and 
compare their merits and drawbacks;  

3) We conduct extensive numerical experiments and 
provide some interesting managerial insights to optimize the 
problem. The remainder of this paper is organized as follows: 
problem formulation is constructed in section 2; robust 
optimization approach formulation is given in section 3; 
numerical experiments are conducted in Section 4; and the 
conclusions are drawn in Section 5. 

II. PROBLEM FORMULATION 

A. Problem Description  
We study the location and inventory problem of 

emergency grain depots (EGD). Two sites are considered: 
candidate EGDs and emergency sites. The goal is to 
determine the set of employed EGDs among the candidate 
sites, the grain inventory level of each EGD and the fraction 
of emergency demands satisfied by each employed EGD for 
each emergency site with minimum system cost. In our 
research, the cost considered include construction cost of 
located EGDs, grains inventory cost and transportation cost. 

To model this problem, the following notation is used 
throughout this paper. 

Sets and parameters: 
I  set of emergency sites, indexed by i 
J  set of candidate EGD, indexed by j 

jf
 

construction cost at EGD j 

ijd
 

distance between demand site i and EGD j 

1c  
unit transportation cost(unit volume, distance) 

2c  
unit inventory cost 

iµ  
demand at demand site i 

Q  maximum  quantities of emergency sites served 
by each EGD 

G  maximum  quantities of grain inventory at each 
located EGD 

M  a sufficiently large number 
Decision variables: 

ijX
 

the fraction of demand at demand site i served by 
EGD j 

jY
 

equals 1, if candidate EGD j is located and 0, 
otherwise 

jS
 

quantity of grain inventory at EGD j 
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B. Nominal Problem Formulation  
In this section, the nominal problem of location-

inventory EGD is formulated. All parameters in the problem 
are assumed to be deterministic and known in advance. The 
nominal model (NM) is formulated as follows: 

 1 2min Yj j ij i ij j
j J j J i I j J

f c d X c Sµ
∈ ∈ ∈ ∈
∑ + ∑ ∑ ∑+  (1) 

 1. ,. ij
j J

X is t I
∈
∑ = ∀ ∈   (2) 

 , ,ij jX Y i I j J≤ ∀ ∈ ∀ ∈  (3) 

 ,j jS MY j J≤ ∀ ∈  (4) 

 ,iji I
X Q j J

∈
≤ ∀ ∈∑  (5) 

 ,i ij ji I
X S j Jµ

∈
≤ ∀ ∈∑  (6) 

 0 ,jS G j J≤ ≤ ∀ ∈  (7) 

 0 1, ,ijX i I j J≤ ≤ ∀ ∈ ∀ ∈  (8) 

 {0,1},jY j J∈ ∀ ∈   (9) 

The objective function (1) is to minimize the sum of 
construction cost for EGDs, transportation cost between 
EGDs and emergency sites, and grains inventory cost. 
Constraints (2) ensure that demands at each emergency site 
are served. Constraints (3) and (4) state that emergency sites 
and grains can only be assigned to employed EGDs. 
Constraints (5) stipulate that the number of emergency sites 
served by each EGD is no more than maximum capacity. 
Constraints (6) guarantee that there are sufficient grains to 
meet the demands assigned to each EGD. Constraints (7) and 
(8) represent the range of grains at each EGD and the 
fraction of demand at emergency site i served by EGD j, 
respectively. Constraints (9) are standard binary constraints. 

III. THE ROBUST OPTIMIZATION APPROACH 

A. Soyster Robust Optimization Model 
We assume the demands at emergency sites belongs to a 

box uncertainty set which is define as: 
, , { : i },i i i i

B nU R I wher ne Iµ µ µ µ= ∈ − ≤ ∀ ∈ = iµ is the 

nominal value of iµ ,iµ represents the uncertainty scale for 
this given entry. Under the box uncertainty set, the 
constraints (6) can be derived as follows: 

max{ } + ,
B

i
i ij ij ji iI i I i

U
X X S j J

µ
µ µµ

∈ ∈∈
= ≤ ∀ ∈∑ ∑ （ ） ; the last 

term of objective function (1) can be derived as follows:


1 1max } +{ .
B

i
ij i ij ij i i

j JU i I j J i I
c d X c d

µ
µ µ µ

∈ ∈ ∈ ∈ ∈

=∑∑ ∑∑ （ ） 

As a result, the Soyster robust optimization model 
(ROM2) is formulated as follow: 

 

2 1in Y +m j j j ij i i ij
j J j J j J i I

f c c dS µ µ
∈ ∈ ∈ ∈

+∑ ∑ + ∑ ∑ （ ）X  (10) 

( ) ( ) ( ) ( ) ( ) ( ) ( ). . 2 ,  3 ,  4 ,  5 ,  7 ,  8 ,  9s t  

 + ,i i ij ji I
S j Jµ µ

∈
≤ ∀ ∈∑ （ ）X  (11) 

B. Budget Robust Optimization Model  
We assume the demands at emergency sites belongs to a 

polyhedron uncertainty set which is define as: 
 { R | / , / 1, }i i i i i i i

n
pol i

U i Iµ µ µ µ µ µ µ= ∈ − ≤ Γ − ≤ ∀ ∈∑
. We define the budget of uncertainty Γ as the RO approach 
proposed by Bertsimas and Sim [2] to control the degree of 
robustness and conservativeness of the solution  takes values 
in the interval [0, I ]. The parameter Γ is not necessarily 

integer which indicates that up to Γ   emergency sites are 
allowed to have uncertain demands, and one emergency site 
changes demands by ( )µΓ − Γ    . 

For the objective function (1), the nonlinear robust 
formulation is as follows: 

 

2 1 1maxmin{ Y { }}j j j ij i ij ij i ijj J j J j J i I j J i iI
f c c d X c dS Xµ ξµ

∈ ∈ ∈ ∈ ∈ ∈
+ ∑ ∑∑+∑ + ∑∑  (12)

 i
i I
ξ

∈
∑ ≤ Γ  (13) 

 0 1,i iξ≤ ≤ ∀  (14) 

The equivalent linear formulation for above model is as 
follows: 

 2 1m { Y }zin j j j ij i ij
j J j J j J i

i
I i I

f c c d XS δµ
∈ ∈ ∈ ∈ ∈

+ + Γ∑ ∑+∑ ∑ + ∑  (15) 

 

1z ,i ij ij
j

i
J
c d X i Iµδ

∈
∑+ ≥ ∀ ∈   (16) 

 , 0,iz i Iδ ≥ ∀ ∈   (17) 

Where , iz δ  are dual variables for constraints (13), 
constraints (14), respectively. 
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Similarly, the nonlinear robust formulation of constraints 
(6) is as follows: 

 +max{ }} ,i ij
i I i I

i ij i jS JXX jµ ξµ
∈ ∈
∑ ∑ ≤ ∀ ∈   (18) 

 i
i I
ξ

∈
∑ ≤ Γ  (19) 

 0 1,i iξ≤ ≤ ∀  (20) 

The equivalent linear formulation for above model is as 
follows: 

 max +l ,i ij j
i

i
i

j j
I I

X S j Jµ ε
∈ ∈

Γ + ≤ ∀∑ ∈∑  (21) 

 l , ,i ijj ij j JX i Iµε+ ≥ ∀ ∈ ∀ ∈   (22) 

 , 0, ,j ijl i I j Jε ≥ ∀ ∈ ∀ ∈  (23) 

Where ,j ijl ε  are dual variables for constraints (19), 
constraints (20), respectively. As a result, the budget robust 
optimization model is formulated as follows: 

 2 1m { Y }zin j j j ij i ij
j J j J j J i

i
I i I

f c c d XS δµ
∈ ∈ ∈ ∈ ∈

+ + Γ∑ ∑+∑ ∑ + ∑ (24) 

( ) ( ) ( ) ( ) ( ) ( ) ( ). . 2 ,  3 ,  4 ,  5 ,  7 ,  8 ,  9s t  

 

1z ,i ij ii j
j J

c d X iδ µ
∈

+ ≥ ∀∑  (25) 

 +l ,i ij j
i I i I

ij jX S j Jµ ε
∈ ∈
∑ ∑Γ + ≤ ∀ ∈  (26) 

 l , ,i ijj ij j JX i Iµε+ ≥ ∀ ∈ ∀ ∈   (27) 

 , , , 0, ,j i ijz l i I j Jδ ε ≥ ∀ ∈ ∀ ∈   (28) 

IV. NUMERICAL EXPERIMENTS  
In this section, we firstly randomly generate input data 

for the problem. Secondly, we generate solutions for above 
three models. Finally, we conduct numerical experiments to 
evaluate the solution and verify the benefits of our robust 
optimization models. 

A. Data Generation  
The values of parameter and information of random data 

generation are shown in Table1and Table II, respectively. 

The x coordinate, y coordinate of emergency sites and 
candidate EGDs are generated randomly with uniform 
distribution (0,100). The demands of each emergency site are 
generated randomly with uniform distribution (100,150). 

TABLE I.  VALUES OF PARAMETERS  

Parameter Values 

jf  500 

1c  2 

2c  200 

Q  6 

S  600 

I  40 

J  15 

Γ  [0,40] 


iµ  80 

B. Solution Generation 
We program in Java and call CPLEX12.6 on eclipse-

mars to solve the models and conduct computational 
experiments. The operation environment is Windows7, RAM 
(4G), CPU (Intel(R), Pentium(R), CPU B940).Table III 
shows the objective values and run time of deterministic 
model (DM), Soyster robust optimization model (SM) and 
budget robust optimization model (BM). 

TABLE II.  RESULTS OF THREE MODELS 

Model Optimal Value CPU time 

DM 1122229.245 0.263s 

SM 1864251.622 0.146s 

BM(Г=4) 1452585.397 0.258s 

The results show that when given the nominal demands, 
the deterministic model provides solution of minimum 
system cost; the Soyster robust optimization solves the 
location-inventory EGD problem at highest cost because it 
considers the worst case of uncertain demands; the budget 
robust optimization model has the media system cost, due to 
its trade-off between the robustness and total cost. The 
results are in line with our former theoretical derivations. 

C. Solution Evaluation 
To evaluate the solution for each model, we conduct 

extensive numerical experiments. We generate 100 samples 
in which demands vary in range  [ , ]i i i iµ µ µ µ− + to simulate 
the real emergency situation. The solution performances are 
evaluated by the mean of objectives values, standard 
variance of objective values (SD) and constraints violation 
percentages. The solution evaluation is shown in Table III. 
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TABLE III.  SOLUTION EVALUATION OF THREE MODELS 

Model Mean of Objectives Values SD 
Constraints 

Violation 
Percentages 

DM 1122246.349 7497.418 46.56% 

SM 1864251.622 8675.450 0% 

BM(Γ =4) 1452585.397 15437.122 3.4% 

The results show that the deterministic model solution is 
unacceptable in real situations since it causes nearly a half of 
constraint violation. Robust optimization models are 
applicable to cope with uncertain demands in emergencies. 
Specifically, the Soyster robust optimization model ensures 
100% service level and causes highest total cost; and Budget 
robust optimization model ( Γ  =4) achieves a quite high 
service level(not 100%) and incurs relatively lower cost. 

D. Comparisons of the Models 
In this section, we generate solutions for Budget robust 

optimization model by varying the values of parameterΓ   
and observe solution performance. The results are show in 
Table IV. 

TABLE IV.  SOLUTION PERFORMANCE OF BUDGET MODEL 

Γ  
Mean of 

Objectives Values SD Constraints Violation 
Percentage 

0 1122246.349 7497.417 46.56% 

4 1428288.259 15437.122 3.48% 

8 1547963.604 18345.525 0.29% 

12 1642969.380 18362.013 0.013% 

14 1675735.295 18244.759 0% 

20 1764630.011 10198.457 0% 

30 1781945.910 8654.123 0% 

40 1781404.636 8675.450 0% 

The results show that when parameter Γ  increases 
slightly, the constraints violation percentages reduce 
significantly. Especially, when it takes value larger than 13, 
the constraints violation percentage decreases to zero. 

We compare the mean of objective functions and 
constraints violation percentages between Soyster robust 
optimization model and budget robust optimization model. 
The comparisons are shown in Table V. 

 
 
 
 
 
 
 

TABLE V.  COMPARISONS RESULTS OF TWO MODELS 

Model Mean of Objectives Values Constraints Violation 
Percentage 

SM 1781404 0 

BM(Γ =14) 1675735 0 

BM(Γ =20) 1764630 0 

BM(Γ =30) 1781945 0 

BM(Γ =40) 1781404 0 

The results show that when Γ  changes from 14 to 40, 
the Budget robust optimization model ensures 100% service 
level as well as Soyster robust optimization model. 
Meanwhile the Budget robust optimization model has lower 
system cost than Soyster robust optimization model. 

V. CONCLUSIONS 
In the paper, we introduce two robust optimization 

models to location-inventory problem of EGDs. Extensive 
numerical experiments are conducted to verify the 
applicability of robust models. We have following 
conclusions: 1) The deterministic model is not applicable to 
real emergencies; 2)To ensure 100% service level, Soyster 
robust optimization model is preferable and it incurs higher 
system cost; 3)Budget robust optimization model makes 
balance between service level and total cost by varying the 
budget of robustness. We suggest the following future 
research directions: develop new robust optimization models 
under different uncertainty sets such as ellipsoid uncertainty 
sets. 
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