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Abstract. This paper describes a decoding method using the accelerated Hopfield neural network, in 

order to address the high complexity of decoding for modulo operations-based fountain codes. The 

method constructs a neural network model based on a non-linear differential equation, and runs the 

model after setting an initial value. During the process, the model’s output value first rapidly 

decreases under the effect of the accelerator resistor, slows down near an equilibrium point, and 

finally regresses to a unique equilibrium point with an arbitrarily small error. The result is half-

adjusted to obtain the source data sequence. Simulated tests indicate the method to be valid, and can 

potentially bring the modulo fountain codes closer to practical application. 

Keywords: Fountain codes; Modulo operation; Decoding; Chinese remainder theorem; Neural 
network. 

1. Introduction 

The concept of fountain codes was first proposed by Byers, Luby et al. in 1998[1]. In 2002, Luby 

built on his earlier work and developed the first practical implementations of fountain code – Luby 

transform (LT) codes[2], which were followed up by implementations from other researchers, 

including online codes[3], raptor codes[4], turbo fountains[5], and so on[6,7,8,9]. These earlier 

fountain codes all use XOR operations for their encoding processes. Ref [10] proposed Chinese 

transform (CT) codes, a new class of fountain code based on the Chinese remainder theorem, in order 

to address the low packet efficiency of LT-based encoding. Ref [11] suggested two variants 

specialized for transmission and computation efficiency. The CT codes all generate packets by 

performing modulo operation on the decimal numbers of the source sequence, thus will be referred 

to as “modulo fountain codes” hereafter. The two papers’ methods somewhat differ in structure, with 

Ref [10] using a chaotic position scrambling algorithm to generate packets. 
However, when it comes to decoding, their approaches have all relied on the relatively complex 

Dayan seeking-unity method, which is a traditional algorithm for solving remainder problems. 

Improving decoding efficiency will be crucial for modulo fountain codes to become more practical. 

The Hopfield neural network excel at inverse operations[12], as their basic model is a first-order non-

linear differential equation, which can quickly regress to a stable equilibrium point in the state space. 

On this basis, this paper puts forward a fast decoding method, using an improved Hopfield neural 

network to perform inverse operations on each received packet to restore the source data sequence. 

This method employs a simple algorithm that omits the need to calculate modular multiplicative 

inverses, effectively addressing the decoding’s complexity problem. Simulated tests have indicated 

the method to be valid and feasible.  

2. Chinese remainder theorem and Dayan seeking-unity method 

2.1 Chinese remainder theorem 

The Chinese remainder theorem is one of the crowning achievements of ancient Chinese 

mathematics. It can be summarized as [13]: let 𝑚1 , 𝑚2, … , 𝑚𝑘 be positive integers that are pairwise 

coprime, and  𝑎1 , 𝑎2, … , 𝑎𝑘  be the respective remainders of a positive integer x  divided 

by 𝑚1 , 𝑚2, … , 𝑚𝑘, then the congruence set  
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Must have a unique solution, and its smallest positive integer solution is:  

x = 𝑎1𝑀1𝑦1 + 𝑎2𝑀2𝑦2 + ⋯ + 𝑎𝑘𝑀𝑘𝑦𝑘                                                                                              (2) 
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1(mod )i i iM y m ; 1,2,...,i k ; and iy  is referred to as the modular multiplicative inverse (hereafter 

“modular inverse”). 

2.2 The Dayan seeking-unity method 

From the previous section, we know that the key step in solving Equation 1 lies in determining the 

modular inverse y in the congruencey𝐺 ≡ 1(𝑚𝑜𝑑𝑚); once determined, the solution can be calculated 

using Equation 2. Since the encoding and decoding processes of modulo fountain codes can be treated 

as respectively the generation and solution of congruence sets in a remainder theorem problem, the 

main costs of the decoding algorithm are incurred by determining the modular inversey, making it 

the core problem in the decoding algorithm.  

The Euler function and the Dayan seeking-unity method are both traditional methods for 

determining modular inverses, with the latter being more practical and programmable as an algorithm. 

When solving a problem as complicated as 873201b ≡ 1(mod9829), the Euler function has a 

computational complexity of 873201𝜙(9289), which cannot be quickly accomplished even by high 

performance computer, while the Dayan seeking-unity method can complete the task in a significantly 

shorter time, making it the generally preferred method for calculating modular inverses.  

Let the congruence bey𝐺 ≡ 1(𝑚𝑜𝑑𝑚), where 𝑚 and 𝐺  are pairwise coprime positive integers, 

the Dayan solution for modular inverse  y can be represented by the following recurrence relations:  
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Where: n  is the total number of non-zero remainders from Euclidean divisions on 𝑚 and𝐺, and 

𝑞𝑘(1 < 𝑘 ≤ 𝑛) represents the quotient of each division. Therefore the modular inverse in question is:  

y ≡ (−1)𝑛𝑐𝑛(𝑚𝑜𝑑𝑚)                                                                                                                            (4) 

3. The neural network-based decoding algorithm 

The complexity issue of modulo fountain codes is found in their decoding algorithms, as their 

encoding algorithms consist of simple modulo operations. This issue can be solved with the 

characteristics of Hopfield neural network [14].  

3.1 Modulo operations 

The encoding components of the existing modulo fountain codes divide data blocks in different 

ways. The computation-efficient approach focuses on minimizing block sizes, while the transmission-

efficient approach adjusts block sizes with modular decomposition according to conditions of the 

transmission channel[11]. Ref [10] uses an approach that balances transmission and computation with 

chaotic position scrambling.  

Regardless of methods, these encoding processes always involve dividing the source binary 

sequence into blocks, converting each block into a decimal number, choosing corresponding moduli 

to calculate its remainders, and generating transmission packets from the moduli and remainders. The 

packets are to be decoded using the remainder theorem at the receiving end. As shown in Fig. 1, the 

source block’s decimal number (e.g. 125) is divided by a series of primes (e.g. 7, 11, 13…), and the 
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resulting remainders are sent as packets. The receiving end will have a 100% chance of recovering 

the original value (e.g. 125) after receiving a sufficient number of the packets.  

125
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6 4 8 6 11 10 9

125

Encoding (Modulo Operations)

Decoding

 
Fig. 1 Encoding and decoding for modulo fountain codes 

3.2 Accelerated decoding method using the Hopfield neural network 

The decoding process of modulo fountain codes involves multiple inverse operations of the 

remainder operations on decimal numbers.The Hopfield neural network are well-suited for inverse 

operations[12], as their basic models are first-order non-linear differential equations, and can rapidly 

regress to a stable equilibrium point in the state space. The decoding of each block can be treated as 

solving a non-linear differential equation, which can be represented by a Hopfield neural network. 

Equation 5 shows the differential equation constructed for this purpose:  
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1,2,...,i L ; and t  is the time variable.  

Equation 5 represents a model where x  is first assigned an initial value, and then as the initial 

value of 𝑈(𝑥)  is 0, 𝑥(𝑡) begins a monotonic decrease over time. After 𝑥  enters the region of 

regression near the solution, the value of 𝑈(𝑥) will stay constant at 1; due to its feedback information, 

𝑥 will tend towards equilibrium, and the optimal solution 𝑥0  can be obtained. While there is some 

error between the optimal solution and the accurate solution, the error can be kept in the -0.5~0.5 

range by adjusting the values of  γ , 𝛽, and 𝑅. The result can then be half-adjusted to obtain the 

accurate solution 𝑥∗, which is the decimal number from the source data block.  

The proof of the principle above can be found in Ref [12]. As long as we choose large enough 

values for γ , 𝛽, and 𝑅 , the approximate solution 𝑥0  can be half-adjusted to obtain the accurate 

solution 𝑥∗. This completes the decoding process. The error 𝜀∗ can be represented by Equation 6.  
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Equation 5 differs from the differential equation provided by Ref [12] by having an additional 

third term on the right-hand side. When implemented as Fig. 2’s circuit schematic, the first term on 

the right-hand side is the effect of x  on the discharging of resistor R ; the second term is the effect of 

feedback information; and the third term is the acceleration effect. With properly tuned values for γ , 𝛽, 
and 𝑅, the third term should be able to accelerate the decoding process. Resistor 𝑅𝑑 is the discharging 
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acceleration resistor; with the third term added, the discharging of 𝑅𝑑 can accelerate the monotonic 

decrease of𝑥(𝑡), without influencing the error between the accurate solution and the stable solution, 

i.e. it has no effect on the result of decoding. The majority of the system’s running time is taken up 

by the discharging process, hence shortening the discharging will also reduce the total time, and 

achieve the acceleration of the decoding.  

There are the following relationships between Equation (5) and the circuit schematic shown in Fig. 

2: R is the network resistor; 𝑅𝑑  is the acceleration resistor; 𝐶 is the capacitor; 𝛾  is the weighted 

resistor; 𝛽 is the amplification factor; 𝑎𝑖
∗ is the input current; 𝑥 is the output voltage; 𝜑𝑖(𝑥) is the 

input voltage of L constraining amplifiers; < x >𝑚𝑖
 can be implemented with asymmetric Hopfield 

neural network; the constraint 𝑈(𝑥)  can be implemented with simple asynchronous sequential 

circuits; the operational amplifier’s input-output relationship is 𝑓(𝑣) = 𝑣. 
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Fig. 2 Circuit diagram of the accelerated Hopfield neural network decoder 

Based on the previous sections, the full decoding process consists of the following:  

(1) The parameters γ , 𝛽, 𝑅 and Δ are set to values based on the length of the source data block, 

so that the equilibrium point of Equation 5 has an optimal error when compared to the source data.  

(2) The initial value is set to be the product of the received moduli 𝑚1 , 𝑚2, … , 𝑚𝑘  minus 1, i.e. 

𝑥(0) = 𝑚1 ∗ 𝑚2 ∗ … ∗ 𝑚𝑘 − 1 , 𝑈(𝑥(0)) = 0 . The neural network described by Equation 5 is 

activated and reaches an equilibrium point, outputting the optimal solution to the equation.  

(3) Lastly, the optimal solution is half-adjusted to obtain an accurate solution, completing the 

decoding process.  

During the decoding, the neural network restores the source data block sequence from the moduli 

and remainders for each block, and as long as the value of  𝛾, 𝛽 and 𝑅 can satisfy the maximum 

possible value of each block, the errors of all blocks will be kept sufficiently small. 

4. Simulated tests and analysis 

The neural network decoding structure of modulo fountain codes can be realized using electronic 

circuit, thus can be used in high-speed and real-time processing environment. However, due to the 

limitation of hardware, the binary number of single group cannot be too long. In order to compare 

different decoding method of the binary number of single group, we select the decimal number 53 

and 179, using fourth-order Runge-Kutta method to perform the simulation. In the experiment, we 

calculate the average of the result after 1000 simulations. 
The simulated tests were run on a computer with a Intel i5-4210 2.6GHz CPU and 8G RAM, using 

the Matlab R2014a software. The first test was to verify the performance of accelerated Hopfield 

59



 

network decoding, and the second test was to compare the traditional method and the Hopfield neural 

network method.  

Test 1: Let the source data block be the decimal number 53, and the parameters be 𝑚1 = 2,  𝑚2 =
3 ,  𝑚3 = 5 ,  𝑚4 = 7 , 𝑅 = 1kΩ ,  𝐶 = 1000pf ,  𝑅𝑑 = 50Ω . γ = 1， 𝛽 = 1, and  Δ = 0.1 . The 

Hopfield neural network with and without acceleration are tested, with results shown in Fig. 3.  

  
(a) Without acceleration                               (b) With acceleration 

Fig. 3 Performance comparison: the Hopfield neural network with and without acceleration 

As shown in Fig. 3, using both networks, the value of the output voltage X started from the initial 

value and regressed towards 52.986573, which is half-adjusted to the accurate value 53. That is to 

say, the result of decoding is 53. The value of D only stayed at the constant 1 when the curve was 

within X’s region of attraction. However, the computation time of the network has been significantly 

shortened with the addition of the acceleration resistor. With all parameters being the same, the 

network without the acceleration resistor regressed in 1.320 × 10−6𝑠,  and the one with the resistor 

took6.408 × 10−8𝑠, which is faster by an order of magnitude. 
Test 2: Let the source data block be the decimal number 179, and the parameters be𝑚1 = 5,  𝑚2 =

7 ,  𝑚3 = 11 ,  𝑚4 = 13 , 𝑅 = 120kΩ ,  𝐶 = 1000pf ,  𝑅𝑑 = 0.24Ω . γ = 1， 𝛽 = 1, and  Δ = 0.1 . 

The Danyan seeking-unity method, the Hopfield neural network and the acceleration Hopfield neural 

network are tested respectively, with results shown in Table1.  

Table 1 Comparison of decoding performance 

The Danyan seeking-unity method The Hopfield neural network The accelerated Hopfield neural network 

2.153×10-3s 3.920×10-4s 4.108×10-9s 

As can be seen from Table 1, when using the Dayan seeking-unity method, the decoding time is 

2.153 × 10−3𝑠; when using the neural network method, the decoding time is 3.920 × 10−4𝑠 ; and 

when using the accelerated neural network method, the decoding time is  4.108 × 10−9𝑠 . The 

decoding speed using the accelerated Hopfield neural network is about 9.54 × 104 faster than that of 

the original neural network method.  

During the early stage of decoding, the decrease of the system’s output voltage can be described 

by𝑥(𝑡) = 𝑥0exp [−𝑡/(𝑅𝐶)], which is the equivalent of directly discharging through resistors. The 

acceleration resistor allows the system to rapidly reach the region of attraction near the source decimal, 

and fall into a local minimum in the region. The majority of the running time is spent in the early 

stage, which can be remarkably shortened by the addition of an acceleration resistor. Compared with 

the Dayan seeking-unity method, the new decoding method is much quicker, thus it increases the data 

processing rate. The simulation results are consistent with the theoretical analysis, as the improved 

method can significantly accelerate the decoding of modulo fountain codes.  

5. Conclusion 

This paper presents a decoding method based on the accelerated Hopfield neural network. Modulo 

fountain codes have several unique advantages over LT codes, including lower redundancy and 

greater flexibility in structures, and their disadvantage lies in the high complexity of the decoding 

process. The Hopfield neural network can be used to significantly increase the efficiency of decoding 

60



 

for modulo fountain codes, and bring them closer to practical application. The feasibility and validity 

of the proposed method were tested through comparison with the traditional decoding method using 

simulated tests.  
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