

A Decoding Method For Modulo Operations-Based Fountain Codes
Using the Accelerated Hopfield Neural Network

Zaihui Deng1, a, Xiaojun Tong1, b and Liangcai Gan2, c

1School of Mathematics and computer science, Wuhan Textile University, Wuhan 430073, China;

2Electronic Information School, Wuhan University, Wuhan 430072, China.

azaihuideng@126.com, btongxiaojun@wtu.edu.cn, clc_gan@hotmail.com

Abstract. This paper describes a decoding method using the accelerated Hopfield neural network, in

order to address the high complexity of decoding for modulo operations-based fountain codes. The

method constructs a neural network model based on a non-linear differential equation, and runs the

model after setting an initial value. During the process, the model’s output value first rapidly

decreases under the effect of the accelerator resistor, slows down near an equilibrium point, and

finally regresses to a unique equilibrium point with an arbitrarily small error. The result is half-

adjusted to obtain the source data sequence. Simulated tests indicate the method to be valid, and can

potentially bring the modulo fountain codes closer to practical application.

Keywords: Fountain codes; Modulo operation; Decoding; Chinese remainder theorem; Neural
network.

1. Introduction

The concept of fountain codes was first proposed by Byers, Luby et al. in 1998[1]. In 2002, Luby

built on his earlier work and developed the first practical implementations of fountain code – Luby

transform (LT) codes[2], which were followed up by implementations from other researchers,

including online codes[3], raptor codes[4], turbo fountains[5], and so on[6,7,8,9]. These earlier

fountain codes all use XOR operations for their encoding processes. Ref [10] proposed Chinese

transform (CT) codes, a new class of fountain code based on the Chinese remainder theorem, in order

to address the low packet efficiency of LT-based encoding. Ref [11] suggested two variants

specialized for transmission and computation efficiency. The CT codes all generate packets by

performing modulo operation on the decimal numbers of the source sequence, thus will be referred

to as “modulo fountain codes” hereafter. The two papers’ methods somewhat differ in structure, with

Ref [10] using a chaotic position scrambling algorithm to generate packets.
However, when it comes to decoding, their approaches have all relied on the relatively complex

Dayan seeking-unity method, which is a traditional algorithm for solving remainder problems.

Improving decoding efficiency will be crucial for modulo fountain codes to become more practical.

The Hopfield neural network excel at inverse operations[12], as their basic model is a first-order non-

linear differential equation, which can quickly regress to a stable equilibrium point in the state space.

On this basis, this paper puts forward a fast decoding method, using an improved Hopfield neural

network to perform inverse operations on each received packet to restore the source data sequence.

This method employs a simple algorithm that omits the need to calculate modular multiplicative

inverses, effectively addressing the decoding’s complexity problem. Simulated tests have indicated

the method to be valid and feasible.

2. Chinese remainder theorem and Dayan seeking-unity method

2.1 Chinese remainder theorem

The Chinese remainder theorem is one of the crowning achievements of ancient Chinese

mathematics. It can be summarized as [13]: let 𝑚1 , 𝑚2, … , 𝑚𝑘 be positive integers that are pairwise

coprime, and 𝑎1 , 𝑎2, … , 𝑎𝑘 be the respective remainders of a positive integer x divided

by 𝑚1 , 𝑚2, … , 𝑚𝑘, then the congruence set

International Conference on Computer Engineering, Information Science & Application Technology (ICCIA 2016)

© 2016. The authors - Published by Atlantis Press 56

1 1

2 2

(mod)

(mod)

(mod)k k

x a m

x a m

x a m







 

 (1)

Must have a unique solution, and its smallest positive integer solution is:

x = 𝑎1𝑀1𝑦1 + 𝑎2𝑀2𝑦2 + ⋯ + 𝑎𝑘𝑀𝑘𝑦𝑘 (2)

Where: M is the least common multiple of 1 2, ,..., km m m , i.e.
1

k

i

i

M m


 , /i iM M m ,

1(mod)i i iM y m ; 1,2,...,i k ; and iy is referred to as the modular multiplicative inverse (hereafter

“modular inverse”).

2.2 The Dayan seeking-unity method

From the previous section, we know that the key step in solving Equation 1 lies in determining the

modular inverse y in the congruencey𝐺 ≡ 1(𝑚𝑜𝑑𝑚); once determined, the solution can be calculated

using Equation 2. Since the encoding and decoding processes of modulo fountain codes can be treated

as respectively the generation and solution of congruence sets in a remainder theorem problem, the

main costs of the decoding algorithm are incurred by determining the modular inversey, making it

the core problem in the decoding algorithm.

The Euler function and the Dayan seeking-unity method are both traditional methods for

determining modular inverses, with the latter being more practical and programmable as an algorithm.

When solving a problem as complicated as 873201b ≡ 1(mod9829), the Euler function has a

computational complexity of 873201𝜙(9289), which cannot be quickly accomplished even by high

performance computer, while the Dayan seeking-unity method can complete the task in a significantly

shorter time, making it the generally preferred method for calculating modular inverses.

Let the congruence bey𝐺 ≡ 1(𝑚𝑜𝑑𝑚), where 𝑚 and 𝐺 are pairwise coprime positive integers,

the Dayan solution for modular inverse y can be represented by the following recurrence relations:

0

1 1

1 2

1

k k k k

c

c q

c q c c k n 





     

 (3)

Where: n is the total number of non-zero remainders from Euclidean divisions on 𝑚 and𝐺, and

𝑞𝑘(1 < 𝑘 ≤ 𝑛) represents the quotient of each division. Therefore the modular inverse in question is:

y ≡ (−1)𝑛𝑐𝑛(𝑚𝑜𝑑𝑚) (4)

3. The neural network-based decoding algorithm

The complexity issue of modulo fountain codes is found in their decoding algorithms, as their

encoding algorithms consist of simple modulo operations. This issue can be solved with the

characteristics of Hopfield neural network [14].

3.1 Modulo operations

The encoding components of the existing modulo fountain codes divide data blocks in different

ways. The computation-efficient approach focuses on minimizing block sizes, while the transmission-

efficient approach adjusts block sizes with modular decomposition according to conditions of the

transmission channel[11]. Ref [10] uses an approach that balances transmission and computation with

chaotic position scrambling.

Regardless of methods, these encoding processes always involve dividing the source binary

sequence into blocks, converting each block into a decimal number, choosing corresponding moduli

to calculate its remainders, and generating transmission packets from the moduli and remainders. The

packets are to be decoded using the remainder theorem at the receiving end. As shown in Fig. 1, the

source block’s decimal number (e.g. 125) is divided by a series of primes (e.g. 7, 11, 13…), and the

57

resulting remainders are sent as packets. The receiving end will have a 100% chance of recovering

the original value (e.g. 125) after receiving a sufficient number of the packets.

125

11 1713 19 23 297

6 4 8 6 11 10 9

125

Encoding (Modulo Operations)

Decoding

Fig. 1 Encoding and decoding for modulo fountain codes

3.2 Accelerated decoding method using the Hopfield neural network

The decoding process of modulo fountain codes involves multiple inverse operations of the

remainder operations on decimal numbers.The Hopfield neural network are well-suited for inverse

operations[12], as their basic models are first-order non-linear differential equations, and can rapidly

regress to a stable equilibrium point in the state space. The decoding of each block can be treated as

solving a non-linear differential equation, which can be represented by a Hopfield neural network.

Equation 5 shows the differential equation constructed for this purpose:

*

1

1
() () (1 ())

i

L

m i

i d

C dx x
x U x x a U x

dt R R  


           (5)

Where:

(()) 0 () 0
1

() (()) 1 () 0 () 0

0

i

i i

whenU x t x for all i

U x whenU x t x or x

others

 

   

   
 

     



， （)

，

，

; C ,  ,  and R are positive real

numbers;
imx  is the remainder of x divided by im ;

*

i ia a   ;  and  are non-integers

larger than 0, with 0  Δ and 0 0.5 Δ ; (0) 1x M  ; ((0)) 0U x  ;
*() ()

ii m ix x a     ;

1,2,...,i L ; and t is the time variable.

Equation 5 represents a model where x is first assigned an initial value, and then as the initial

value of 𝑈(𝑥) is 0, 𝑥(𝑡) begins a monotonic decrease over time. After 𝑥 enters the region of

regression near the solution, the value of 𝑈(𝑥) will stay constant at 1; due to its feedback information,

𝑥 will tend towards equilibrium, and the optimal solution 𝑥0 can be obtained. While there is some

error between the optimal solution and the accurate solution, the error can be kept in the -0.5~0.5

range by adjusting the values of γ , 𝛽, and 𝑅. The result can then be half-adjusted to obtain the

accurate solution 𝑥∗, which is the decimal number from the source data block.

The proof of the principle above can be found in Ref [12]. As long as we choose large enough

values for γ , 𝛽, and 𝑅 , the approximate solution 𝑥0 can be half-adjusted to obtain the accurate

solution 𝑥∗. This completes the decoding process. The error 𝜀∗ can be represented by Equation 6.

1 1
*

1
1

x
RL

R






 




*ε =
 (6)

Equation 5 differs from the differential equation provided by Ref [12] by having an additional

third term on the right-hand side. When implemented as Fig. 2’s circuit schematic, the first term on

the right-hand side is the effect of x on the discharging of resistor R ; the second term is the effect of

feedback information; and the third term is the acceleration effect. With properly tuned values for γ , 𝛽,
and 𝑅, the third term should be able to accelerate the decoding process. Resistor 𝑅𝑑 is the discharging

58

acceleration resistor; with the third term added, the discharging of 𝑅𝑑 can accelerate the monotonic

decrease of𝑥(𝑡), without influencing the error between the accurate solution and the stable solution,

i.e. it has no effect on the result of decoding. The majority of the system’s running time is taken up

by the discharging process, hence shortening the discharging will also reduce the total time, and

achieve the acceleration of the decoding.

There are the following relationships between Equation (5) and the circuit schematic shown in Fig.

2: R is the network resistor; 𝑅𝑑 is the acceleration resistor; 𝐶 is the capacitor; 𝛾 is the weighted

resistor; 𝛽 is the amplification factor; 𝑎𝑖
∗ is the input current; 𝑥 is the output voltage; 𝜑𝑖(𝑥) is the

input voltage of L constraining amplifiers; < x >𝑚𝑖
 can be implemented with asymmetric Hopfield

neural network; the constraint 𝑈(𝑥) can be implemented with simple asynchronous sequential

circuits; the operational amplifier’s input-output relationship is 𝑓(𝑣) = 𝑣.

f ff f

< >m1

< >m2

< >m3

< >m4

f
R

C

*

4a *

3a *

2a *

1a

1-U

dR

















U UUU

x

Fig. 2 Circuit diagram of the accelerated Hopfield neural network decoder

Based on the previous sections, the full decoding process consists of the following:

(1) The parameters γ , 𝛽, 𝑅 and Δ are set to values based on the length of the source data block,

so that the equilibrium point of Equation 5 has an optimal error when compared to the source data.

(2) The initial value is set to be the product of the received moduli 𝑚1 , 𝑚2, … , 𝑚𝑘 minus 1, i.e.

𝑥(0) = 𝑚1 ∗ 𝑚2 ∗ … ∗ 𝑚𝑘 − 1 , 𝑈(𝑥(0)) = 0 . The neural network described by Equation 5 is

activated and reaches an equilibrium point, outputting the optimal solution to the equation.

(3) Lastly, the optimal solution is half-adjusted to obtain an accurate solution, completing the

decoding process.

During the decoding, the neural network restores the source data block sequence from the moduli

and remainders for each block, and as long as the value of 𝛾, 𝛽 and 𝑅 can satisfy the maximum

possible value of each block, the errors of all blocks will be kept sufficiently small.

4. Simulated tests and analysis

The neural network decoding structure of modulo fountain codes can be realized using electronic

circuit, thus can be used in high-speed and real-time processing environment. However, due to the

limitation of hardware, the binary number of single group cannot be too long. In order to compare

different decoding method of the binary number of single group, we select the decimal number 53

and 179, using fourth-order Runge-Kutta method to perform the simulation. In the experiment, we

calculate the average of the result after 1000 simulations.
The simulated tests were run on a computer with a Intel i5-4210 2.6GHz CPU and 8G RAM, using

the Matlab R2014a software. The first test was to verify the performance of accelerated Hopfield

59

network decoding, and the second test was to compare the traditional method and the Hopfield neural

network method.

Test 1: Let the source data block be the decimal number 53, and the parameters be 𝑚1 = 2, 𝑚2 =
3 , 𝑚3 = 5 , 𝑚4 = 7 , 𝑅 = 1kΩ , 𝐶 = 1000pf , 𝑅𝑑 = 50Ω . γ = 1， 𝛽 = 1, and Δ = 0.1 . The

Hopfield neural network with and without acceleration are tested, with results shown in Fig. 3.

(a) Without acceleration (b) With acceleration

Fig. 3 Performance comparison: the Hopfield neural network with and without acceleration

As shown in Fig. 3, using both networks, the value of the output voltage X started from the initial

value and regressed towards 52.986573, which is half-adjusted to the accurate value 53. That is to

say, the result of decoding is 53. The value of D only stayed at the constant 1 when the curve was

within X’s region of attraction. However, the computation time of the network has been significantly

shortened with the addition of the acceleration resistor. With all parameters being the same, the

network without the acceleration resistor regressed in 1.320 × 10−6𝑠, and the one with the resistor

took6.408 × 10−8𝑠, which is faster by an order of magnitude.
Test 2: Let the source data block be the decimal number 179, and the parameters be𝑚1 = 5, 𝑚2 =

7 , 𝑚3 = 11 , 𝑚4 = 13 , 𝑅 = 120kΩ , 𝐶 = 1000pf , 𝑅𝑑 = 0.24Ω . γ = 1， 𝛽 = 1, and Δ = 0.1 .

The Danyan seeking-unity method, the Hopfield neural network and the acceleration Hopfield neural

network are tested respectively, with results shown in Table1.

Table 1 Comparison of decoding performance

The Danyan seeking-unity method The Hopfield neural network The accelerated Hopfield neural network

2.153×10-3s 3.920×10-4s 4.108×10-9s

As can be seen from Table 1, when using the Dayan seeking-unity method, the decoding time is

2.153 × 10−3𝑠; when using the neural network method, the decoding time is 3.920 × 10−4𝑠 ; and

when using the accelerated neural network method, the decoding time is 4.108 × 10−9𝑠 . The

decoding speed using the accelerated Hopfield neural network is about 9.54 × 104 faster than that of

the original neural network method.

During the early stage of decoding, the decrease of the system’s output voltage can be described

by𝑥(𝑡) = 𝑥0exp [−𝑡/(𝑅𝐶)], which is the equivalent of directly discharging through resistors. The

acceleration resistor allows the system to rapidly reach the region of attraction near the source decimal,

and fall into a local minimum in the region. The majority of the running time is spent in the early

stage, which can be remarkably shortened by the addition of an acceleration resistor. Compared with

the Dayan seeking-unity method, the new decoding method is much quicker, thus it increases the data

processing rate. The simulation results are consistent with the theoretical analysis, as the improved

method can significantly accelerate the decoding of modulo fountain codes.

5. Conclusion

This paper presents a decoding method based on the accelerated Hopfield neural network. Modulo

fountain codes have several unique advantages over LT codes, including lower redundancy and

greater flexibility in structures, and their disadvantage lies in the high complexity of the decoding

process. The Hopfield neural network can be used to significantly increase the efficiency of decoding

60

for modulo fountain codes, and bring them closer to practical application. The feasibility and validity

of the proposed method were tested through comparison with the traditional decoding method using

simulated tests.

Acknowledgements

This work was supported by the Natural Science Foundation of Hubei Province of China under

Grant 2015CFB652.

References

[1]. J. Byers, M. Luby, M. Mitzenmaeher, and A. Rege. A digital fountain approach to reliable

distribution of bulk data. ACM SIGCOMM, 98, Vancouver, Aug.1998, pp.56-67.

[2]. M. Luby LT codes. The 43rd Annual IEEE Symposium on Foundations of Computer Science,

2002. Vancouver: 2002: 271–280.

[3]. P. Maymounkov. Online codes. NYU, Tech. Rep. TR2002-833, 2002.

[4]. A. Shokrollahi Raptor codes. IEEE Transactions on Information Theory. 2006, 52(6), pp. 2551-

2567.

[5]. H. Jenkac, J. Hagenauer, T. Mayer. The turbo-fountain. European Transactions on

Telecommunications. 2006, 17(3), pp. 337-349.

[6]. J. H. Sorensen, P. Popovski, J. Ostergaard. Design and Analysis of LT codes with decreasing

ripple size. IEEE Tran action on Communications, 2012, 60(11), pp.3191-3197.

[7]. Yen Kuo-Kuang, Liao Yen-Chin, Chen Chih-Lung, Chang Hsie-Chia. Modified robust soliton

distribution (MRSD) with improved ripple size for LT codes. IEEE Communications Letters,

2013, 17(5), pp.976-979.

[8]. Megasthenis Asteris, Alexandros G. Dimakis. Repairable fountain codes. IEEE Journal on

Selected Areas in Communications, 2014, 32(5), pp.1037-1047.

[9]. Francisco Lazaro, Enrico Paolini, Gianluigi Liva, Gerhard Bauch. Distance spectrum of fixed-

rate raptor codes with linear random precoders. IEEE Journal on Selected Areas in

Communications, 2016, 34(2), pp.422-436.

[10]. Cheng Huang, Ben-Shun Yi, Liang-Cai Gan, et al. Fountain codes based on modulo and

chaos[J].Journal of Beijing University of Posts and Telecommunications. 2010, 33(3), pp.1221-

125.

[11]. Sun Hung-Min, Chang Shih-Ying, Hung Yu-Hsiang, et al. Decomposable forward error

correction codes based on Chinese remainder theorem[C]. 10th International symposium on

pervasive systems, Algorithms, and networks. 2009, pp.260-265.

[12]. Hong Sun, Tian-ren Yao. Mathematical principle of residue-to-decimal conversion by neural

network, ACTA Electronic Sinica. 1995, 23(4), pp.48-52.

[13]. D. W. Tank, J. J. Hopfield. Simple “neural” optimization networks: an A/D converter, signal

decision circuit, and a linear programming circuit. IEEE Transactions on Circuits and

Systems.1986, 33(5), pp.533-541.

[14]. O. Goldreich, D. Ron, M. Sudan. Chinese remaindering with errors[J]. IEEE Transactions on

Information Theory, 2000, 46(4), pp.1330-1338.

61

