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Abstract. With regard to two dimensional Direction-of-Arrival (2-D DOA) estimation in sparse 

array, this paper presents a singular value threshold based estimation of signal parameters via 

rotational invariance technique (SVT-ESPRIT) algorithm. Firstly, a signal model of DOA estimation 

based on matrix completion is established which turns out to meet Null Space Property (NSP). 

Secondly, a full signal array is recovered from a sparse signal array using fixed-point iteration 

algorithm. Finally, 2-D DOA estimation can be achieved from the recovered signal. The proposed 

algorithm can reduce the number of array elements and achieve high accuracy of 2-D DOA 

estimation in sparse array. Computer simulations demonstrate the effectiveness and robustness of the 

proposed algorithm. 
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1. Introduction 

DOA estimation is an integral part of array signal processing, and has been applied in wide-range 

fields, including digital communication, signal processing, target recognition and so on [1-3]. 

Comparatively, 2-D DOA estimation [4, 5] performs better because of the fact that it can obtain both 

target azimuth and pitch angle at the same time. In planar array [6], 2-D DOA estimation can obtain 

target angle with higher accuracy, lower average side lobes, and it is not sensible to noise. However, 

in this case, considerable hardware equipment is required, such as antennas, sampling apparatus, etc, 

which increases cost significantly. By contrast, in sparse array, the number of array units, antennas, 

sampling devices can be effectively declined and design cost can be largely cut down. Nevertheless, 

for this case, the problem of angle ambiguity occurs and average side lobes of frequency spectrum 

may rise substantially. 

Matrix completion [7-9] is an extension of compressive sensing (CS) [10, 11]. If a matrix is a 

low-rank matrix, matrix completion can reconstruct a full matrix from a subset of array elements. 

This theory has been widely adopted in image processing [15], pattern recognition [16], etc. Matrix 

completion technique converts the problem of least square to the problem of nuclear-norm 

optimization which lowers the complexity of matrix reconstruction. In recent years, this technique 

develops rapidly and has achieved impressive breakthroughs in many fields, involving in Fast 

Algorithm [12, 13], Exact Recovery [14] and so on. 

This paper presents a singular value threshold based estimation of signal parameters via rotational 

invariance technique (SVT-ESPRIT) algorithm. According to low-rank property of two dimensional 

receive signal array, the proposed algorithm firstly formulates a signal model of DOA estimation 

based on matrix completion and this model is proved to meet null space property (NSP). Thus, the 

robustness of DOA estimation via matrix completion is ensured. Secondly, a full array signal is 

recovered from a sparse array signal by fixed-point iterative method. Finally, 2-D DOA estimation 

can be acquired from the recovered signal by estimation of signal parameters via rotational invariance 

technique (ESPRIT) algorithm. By contrast to conventional algorithms, the proposed algorithm 

combines matrix completion with 2-D DOA estimation which can estimate target angle precisely and 

meantime enhance the availability of array elements. 
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2. Signal Model in Sparse Array 

Suppose uniform rectangular array (URA) [3] is shown as Fig.1. The number of elements in 

x-direction and y-direction are xM  and yM respectively. The distances between corresponding 

elements are xd  and yd . The pitch and azimuth angle of target are   and  , respectively. 

 
Fig. 1 The Uniform Rectangular Array 

In multiple-targets scene, vector of receive signal model is expressed as 
( ) ( ) ( ), 1, ,T

x y RX t A S t A N t t N                                                                                                           (1) 

Where N  is the number of snapshot,   is the number of target, ( )is t  is waveform of the i-th target 

and ( )n t is measurement noise of dimension 1x yM M  . ( , )xi yia   is dimensional steering vector 

1x yM M   of the i -th target and corresponds to target angel in two-dimensional space domain, which 

can be shown as 
( , ) ( ) ( )xi yi y yi x xia a a                                                                                                                     (2) 

Where   represents Kronecker products, ( )x xia  and ( )y yia   can be respectively defined as 
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Where xi  and yi  is determined by azimuth i and pitch angle i  respectively as follows: 
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Where 
2

k



 and   refers to wavelength. Convert signal model to a matrix, we have 

1

( ) ( , ) ( ) ( ), 1, ,xi yi i R
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 
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Where   is the number of targets, ( )is t  is target waveform of the i -th target, ( )RN t  is dimensional 

noise matrix x yM M  of receive signal. ( , )xi yiA    is dimensional steering matrix x yM M of the i -th 

target which can be described as 

( , ) ( ) ( )T
xi yi x xi y yiA a a                                                                                                                    (6) 

Vectorize matrix of signal model and the vector we get is same as vector of signal model, namely 
( ) [ ( )]x t vec X t                                                                                                                                  (7) 

Matrix of signal model can be presented as 

( ) ( ) ( ), 1, ,T
x y RX t A S t A N t t N                                                                                                           (8) 

Where x x x1 x x2 x xA [a ( ),a ( ) a ( )]    is xM   dimensional steering vector, 

1 2[ ( ), ( ) ( )]y y y y y y yA a a a    is yM   dimensional steering vector, ( ) ( ( ))iS t diag s t is a diagonal 

matrix of   dimension, the first   elements of ( )is t  are non-zero corresponding to the number of   

targets. When the power of noise matrix ( )RN t  is much smaller than the signal power, the rank of 

receive signal matrix is ( ( )) ( ( ))rank X t rank S t   , in other words, matrix ( )X t is low-rank. Matrix in 
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Eq. (8) meets strong irrelevance property and can recover a full matrix with high accuracy via matrix 

completion [19]. 

When the number of known elements in matrix is 1 2( )m kr n n r   [9], target matrix can be 

precisely recovered by matrix completion, where 1n  and 2n  are the number of rows and columns, 

respectively, r is rank of target matrix and k  is constant. Thus, the proposed sparse array model in 

this paper is as follows. Select elements randomly from URA with a total number of m elements to 

build a new sparse array. Consider receive signal model in sparse array is ( )sX t , then it is related to 

receive signal matrix ( )X t of URA depicted in Fig. 1 by 

( ) ( ) , ( , )

( ) 0 ,( , )

s ij ij

s ij

X t X t i j

X t i j

 


 
                                                                                                                    (9) 

Where   is block of array unit positions in sparse array. 

3. The Proposed Algorithm 

3.1 Signal Model of 2-D DOA Estimation Based on Matrix Completion 

When the number of sampled elements is 1 2( )m r n n r   , it’s unlikely to recover original matrix 

from sampled matrix using matrix completion [9]. Hence, this paper adopts the following approaches 

to construct a sampled matrix. Let the number of sampled elements be 1 23* ( )m r n n r   . We sample 

elements from the full array uniformly and randomly to formulate a sparse array where the number of 

elements is m . Consider receive signal matrix of the full array as ( )X t  and the proposed receive signal 

matrix in sparse array as ( )sX t , we have 
( ( )) ( ( ))sP X t P X t                                                                                                                            (10) 

Where ( ( ))P X t  denotes real position of antennas in sparse array. 

Since ( )X t is low-rank matrix, we can easily note that ( )RX t can be recovered from receive 

signal ( )sX t  of the sparse array [9]. In this case, the number of antennas and sampling devices are 

declined and the complexity of system is lowered. The corresponding matrix completion model can 

be summarized as 

*
min ( ) ,

. . ( ( )) ( ( )).
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                                                                                                       (11) 

It can be proved that if a sampling model meet NPS [10], rank minimization of this model equals to 

its nuclear-norm minimization. Regard null space of sampling operator P  as  

 1 2Null( )= : ( ) ,
n n

P M R P M


  =0                                                                                                         (12) 

Matrix in null space Null( )P  can hardly be recovered. Analyze signal model (3) and it can be 

observed that 
( 1)

[ ( )] 0xi x

x

j m

x xi ma e
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                                                                                                                (13) 

Arbitrary elements of both matrix 1 2[ ( ), ( ), , ( )]x x x x x x xA a a a     and matrix yA  in (8) are nonzero. 

The first i  elements of diagonal element ( )S t  are nonzero. On the basis of matrix multiplication, we 

can know that arbitrary elements of matrix RX  are nonzero. Thus, null space of sampling operator is a 

null block and whichever sampling operator is adopted, matrix RX  won’t appear in null space of 

sampling operator, namely R( ) Null( )P x P  and matrix RX  meets NSP. 

3.2 SVT-ESPRIT Algorithm 

2-D DOA estimation in planar array can locate target angle precisely with lower average side 

lobes and not easily interfered by noise and clutter. Nevertheless, massive hardware equipment, like 

antennas and sampling devices, is necessary in this case which results in significantly increased cost. 

In comparison, 2-D DOA estimation in sparse array performs effectively in reducing the number of 

array units, antennas as well as sampling devices and cutting down design cost. However, on this 

occasion, accuracy of target estimation declines and spectrum average side lobes rise substantially.  

In view of the foregoing problem, this paper proposes a SVT-ESPRIT algorithm. Firstly, 

estimation matrix ( )RX t  of full matrix is recovered from receive signal matrix ( )sX t  of sparse array 
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using matrix completion. Secondly, resorting to spectrum estimation algorithm, 2-D DOA estimation 

of target is obtained. Neglect noise interference and then vector of receive signal is 

R ( )= ( ) T

x yX t A S t A                                                                                                                                 (14) 

Let 1 1 1 1 1 2 2 1[ ( , ), ( , ), , ( , )]x x x x k kA a a a       and 2 2 1 1 2 2 2 2[ ( , ), ( , ), , ( , )]x x x x k kA a a a      , where 
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There is one less twiddle factor in 1xA  than 2xA  and 2 1x x xA A Φ  where  

1 1 2 2

2 2 2
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xΦ e e e
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                                                                             (16) 

Suppose subspace of signal is sE  and  
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Where 1E  is related to 2E  by  
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Thus,  
1

2 1 1 1 1x xE E T Φ T E                                                                                                                             (19) 

Where 
1

1 1x xT Φ T   and T  is a full-rank matrix. Based on least square method, it can be concluded 

that  

1 2
ˆ

x S SE E                                                                                                                                            (20) 

Eigen-decompose ˆ
x  and we have xΦ . From (16), it can be deduced that 

1 1 2 2[sin cos ,sin cos , ,sin cos ]x k kr                                                                                                       (21) 

Transpose matrix R ( )X t  and likewise we have  

1 1 2 2[sin sin ,sin sin , ,sin sin ]y k kr                                                                                                               (22) 

After angle matching, DOA estimation of target is  
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4. Simulations 

In this section, some simulations are conducted to demonstrate the robustness of 2-D DOA 

estimation in sparse array and the effectiveness of the proposed algorithm. In the simulations, full 

array is a URA of 64 64  elements with the total number of array elements m=4096 and elements 

distance in x-direction and y-direction = = / 2x yd d  . However, sparse array is constructed from 

randomly sampled elements of full array where the total number of sampled units is 1200. There are 

two targets in space domain and their corresponding 2-D DOA are (30 ,15 )   and (10 ,35 )  , 

respectively. 

Experiment 1: 2-D DOA estimation in sparse array based on matrix completion is analyzed. Let 

the number of snapshots be 100, SNR is 20dB and 500 Monte Carlo simulations are implemented. 

Fig.2 shows the simulation result of 2-D DOA estimation using SVT-ESPRT algorithm, the proposed 

algorithm adopts sparse matrix where there are only 1200 array elements, in other words, 70% units 

removed from full array. Compared with conventional DOA estimation algorithm, the presented 

algorithm directly obtains receive signal from sparse array and acquires target angle by matrix 

completion and spectrum estimation technique, for the benefit of higher-resolution angle estimation 

and enhanced element availability. 

353



 

10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

The azimuth angle/degree

T
h
e
 p

it
c
h
 a

n
g
le

/d
e
g
re

e

 
Fig. 2 2-D DOA estimation by SVT-ESPRIT Algorithm 

Experiment 2: SVP-ESPRIT algorithm with different SNR and array elements is discussed. In Fig. 

3, it depicts RMSE with different SNR by SVP-ESPRIT algorithm, when the number of array 

elements is 900, 1200 and 1500, respectively. Let the number of snapshots is 100 and 500 Monte 

Carlo simulations is conducted. It is convenient to note that estimation accuracy of SVP-ESPRIT 

algorithm is proportional to the number of array elements. This result is due to that the recovery 

accuracy of matrix completion grows with the increasing number of array elements, and furthermore 

the spectrum estimation of higher recovery accuracy leads to smaller estimation error.   
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Fig. 3 RMSE against different SNR and array elements 

5. Conclusion 

This paper presents a SVT-ESPRIT algorithm. A signal model of DOA estimation based on matrix 

completion is established. This model proves to meet the NSP and can obtain 2-D DOA estimation 

effectively in sparse array. By contrast to conventional 2-D DOA estimation algorithms, the proposed 

algorithm directly achieves receive signal from sparse array. Besides, it acquires target angle by 

matrix completion and spectrum estimation technique which has high-resolution angle estimation 

and improved elements availability. 
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