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Abstract. An adaptive fuzzy network method is proposed for measuring flexible truss deformation 

by using situ strain in this paper. The relation matrix between strain and arbitrary deformation nodes 

of truss is first derived by using inverse finite element method. Based on the elements of matrix, strain 

measuring displacements are obtained. In addition, an adaptive fuzzy network for measuring truss 

deformation is developed according to the measured displacement and situ strain. Furthermore, the 

experiment on deformation measurement of the flexible truss modal is conducted. The experiment 

shows that the adaptive fuzzy network measuring method is characterized by high accuracy for 

measuring flexible truss deformation. 
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1. Introduction 

A Due to light mass, strong bearing and easy adjustment, the flexible truss has been widely used 

in smart structures such as the wings of unmanned air vehicle (UAV), large deploy-able antennas in 

satellites and the bracket of array antenna [1]. Nevertheless, the flexible truss tends to bend and twist 

when bearing temperature and external loads. For example, the wings of UAV are distorted under the 

influence of air-stream in cruising, which will not only cause harm to the flight safety, but also 

decrease the pointing accuracy of array antennas of radar conformed on the wings. In this case, the 

wings of UAV need real-time feedback to the control system and actuator with real-time deformation 

measuring to maintain a safe flight [2]. Moreover, the deformation quantities are used to correct the 

excitation current or provide feedback to actuator to adjust initial phase distribution of the array 

antennas with the purpose of ensuring the pointing accuracy and gain of antennas [3]. Therefore, the 

real-time measuring of flexible truss deformation plays an important role in structures health 

monitoring. However, for the truss deformation measurement in aerospace, the present main method 

is still measuring the situ strain with strain sensors to estimate the situation of the entire structure. 

In the literature [4-6], the global or piecewise continuous basis function methods were employed 

to fit surface measured strain into structure strain field, and then the structure deformation 

displacement was obtained from the strain-displacement relationship. This method is easy to 

implement, but its range of application and accuracy of deformation estimation depend on the 

appropriate selection of basis function and weight coefficients. Modal shapes are used as basis 

function in [7, 8]. The deformation displacements are reconstructed from measured strains by using 

the modal transformation method. However, there exist the following disadvantages in this method: 

1) The detailed material elasticity and inertial parameters are needed to precisely construct modal 

shapes; 2) This method is difficulty to tackle with geometrically nonlinear problems. For example, 

the flexible truss of the aircraft wings has different modal shapes under different loads so a single 

modal shape cannot accurately reflect structure deformation. 

On the basis of Euler-Bernoulli beam equation, R.Glaserd and Ko et al determined the deflection 

of beam by the integration of discretely measured strains directly[9,10]. Particularly, Ko et al applied 

the classical beam equation to develop a kind of method to approximate beam curvature through 

integrating the discrete measured strains [10]. Their one-dimensional solution has displayed high 

accuracy in predicting deflection, but this method fails to estimate the element deformation under 

multidimensional complex loads.  
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Tessler and Spangler [11] reconstructed the shear-deformable structures of plates and shells using 

the inverse finite methodology (IFEM), which is able to reconstruct three-dimensional displacement 

vector from surface measuring strains in all the domains according to the least-square variance 

principle. Due to the fact that only the displacement-strain relationship is used, this methodology 

conducts deformation reconstruction can be accomplished without the prior knowledge of loads, 

materials and inertial damping. FBG sensors were applied in [12] to measure the surface strains on 

the slender beams and then the deformation displacement was reconstructed by using an iFEM shell 

model. The beam deformation displacement and cross-section torsion were reconstructed by 

Gherlone et al who employed the inverse finite element method to achieve high reconstruction 

accuracy of deformation displacement without any prior knowledge of the finite element modal and 

loads in [13-14]. Nevertheless, the scheme ignores that the installation errors of the strain sensors 

have influence on the deformation estimating. Moreover, the large curvature has harmful effect on 

the measuring accuracy of the sensors stuck on the special angle positions. 

Feng et al developed a deformation measurement algorithm based on fuzzy network [15]. In their 

solution, the displacement of the measured points and the strain data of the involved points are trained 

with fuzzy network to determine the relationship between displacement and strains. In the applied 

phase of network rules, the strain measured values of the involved points are used as the network 

input data and then deformation displacement values of measured nodes are directly obtained through 

the trained network. Because the fuzzy network train of the non-linear relationship is carried out 

according to deformation displacement values of the concerned points and the measured data of the 

relevant strains, the consequent accuracy highly depends on the selection of the relevant strains. 

Therefore, the optimized selection of the relevant strain needs to be firstly conducted before applying 

this method. 

On the basis of situ strain selection, this paper presents an adaptive fuzzy network methodology to 

measure the flexible truss deformation. The relation matrix, which indicates the relation between situ 

strain and the arbitrary measured nodal of truss, was derived by IFEM firstly. And the situ strain will 

be selected according to the relation matrix. Furthermore, the nonlinear relationship between the 

displacement and the strain will be obtained based on the measured nodal deformation and the 

selected situ strain data with adaptive fuzzy network. Eventually, the experiment is carried out on the 

fabricated flexible truss in order to validate the effectiveness of the measuring system. 

2. The Selection of Situ Strain Nodes 

For the common optimal methods for transducer selection [16, 17] such as Effective Independence 

(EI), Modal Kinetic Energy (MKE), it is the structure modal shape obtained from the kinematic 

equation that is optimized. The optimization objective is the typical active nodes in mode shape or 

the measurement points that can reflect the maximum Fisher information matrix of mode shape. 

However, the optimization of the above methods depends tightly on the accuracy of establishing 

finite element model of the structure. Since it is no need of the prior knowledge such as finite element 

model of structure and loads, the IFEM is employed to optimally select strain in the paper. 

The IFEM [14] determines the relationship between the nodal kinematic variables and any 

measured cross-section in the beam element by estimating the least-square error between the 

theoretical strains and the experimental strains: 

keue = f e                                                                                                                                         (1) 

𝑘𝑒, 𝑓𝑒are defined as follows: 

𝑘𝑒 = ∑ 𝑤𝑘𝑘𝑘
𝑒6

𝑘=1              𝑓𝑒 = ∑ 𝑤𝑘𝑓𝑘
𝑒6
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Where ue denotes nodal kinematic variables,B(x)  is the coefficient matrix that involves the 

derivatives of the shape function, L denotes the length of the beam element, eεi and n are the section 
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strains and its number respectively in the element;n = 1 in this paper, the section strains are obtained 

by computing the measured surface strain: 

𝜀𝑥
∗(𝑥𝑖 , 𝜃, 𝛽) = 𝑒1(𝑥𝑖)(𝑐𝛽

2 − 𝑣𝑠𝛽
2) + 𝑒2(𝑥𝑖)(𝑐𝛽

2 − 𝑣𝑠𝛽
2)𝑠𝜃𝑅𝑒𝑥𝑡 + 𝑒3(𝑥𝑖)(𝑐𝛽

2 − 𝑣𝑠𝛽
2)𝑐𝜃𝑅𝑒𝑥𝑡 +

                                𝑒4(𝑥𝑖)𝑐𝛽𝑠𝛽𝑐𝜃 − 𝑒5(𝑥𝑖)𝑐𝛽𝑠𝛽𝑠𝜃 + 𝑒6(𝑥𝑖)𝑐𝛽𝑠𝛽𝑅𝑒𝑥𝑡 = 𝐴 ∗ 𝑒
𝜀𝑖(𝑢)                                (3) 

In (3), v is the passion ratio, e𝜀𝑖(𝑢) and εx
* (xi, θ, β) are the section strains and measured surface 

strains, respectively. 𝑅𝑒𝑥𝑡 Denotes the distance between the centroid of the section and the location 

of the situ strain. Then, A can be considered as the coefficient matrix transferring the cylindrical 

coordinate to Cartesian coordinate.   

In the finite element framework, the element kinematic field can be interpolated by nodal 

kinematic variables and shape function: 

𝑢(𝑥) ≅ 𝑢ℎ(𝑥) = 𝑁(𝑥)𝑢𝑒                                                                                                                   (4) 

Where, N(x) denotes the shape function and 𝑢(𝑥) is the element kinematic field. 

Substituting Eq. (2) into Eq. (1) results in the following form of Eq. (3): 

𝑢(𝑥) = 𝑁(𝑥)(𝑘𝑒)−1𝑓𝑒
n=1
⇒  𝑁(𝑥)(𝑘𝑒)−1(∑ 𝑤𝑘[𝐵𝑘

𝑇(𝑥𝑖) ∗  (𝐴
−1𝜀x

∗(𝑥𝑖 , 𝜃, 𝛽))]
6
𝑘=1 )  

          = 𝑇 ∗ 𝜀x
∗(𝑥𝑖 , 𝜃, 𝛽)                                                                                                                                 (5) 

Thus, each component in 𝑢(𝑥) can denote the weighted sum of the measurement surface strain. 

𝑢𝑖
𝑒 = 𝑎𝑖1𝑒

𝜀1 + 𝑎𝑖2𝑒
𝜀2 +⋯+ 𝑎𝑖𝑘𝑒

𝜀𝑗                                                                                                (6) 

Where, ui
e ∈ ue  denotes the nodal kinematic variables component. j is the number of mounted 

sensors, and eεi ∈ εx
* (x, θ, β) is surface strain value obtained from ith strain sensor. ai1, ai2, … , aik ∈

T Refer to the weights of the displacement component directly corresponding to the strain value.  The 

contribution of every strain measurement point when calculating deformation displacement can be 

determined thought comparing the absolute values of the weights. For instance, if the absolute value 

of one weight is larger, its strain value of the point is closely related to deformation displacement. 

This strain value can thus be selected as the input data of the network. Otherwise, the strain value of 

the measurement point should be abandoned. Based on the above-mentioned rule, the measured nodal 

strains are optimally selected. 

Table 1. Location of strain sensors 

𝑒𝜀1(𝑥, 𝜃, 𝛽) 𝑒𝜀2(𝑥, 𝜃, 𝛽) 𝑒𝜀3(𝑥, 𝜃, 𝛽) 𝑒𝜀4(𝑥, 𝜃, 𝛽) 𝑒𝜀5(𝑥, 𝜃, 𝛽) 𝑒𝜀6(𝑥, 𝜃, 𝛽) 

(L/2,−2π/3,0) (L/2,−2π/3, π/4) (L/2,0,0) (L/2,0, π/4) (L/2,2π/3,0) (L/2,2π/3, π/4) 

 

 

Fig. 1 Placement of strain sensors in beam element 

For the different inverse frame elements, the number of the transducers and the components of  

e1,e2, … , e6 are accordingly different in Eq. (3). For the 0th-order element, section strains ei (i=1, 4-

6) are constant and ei (i=2, 3) are linear, thus six strain sensors are required. While for the 1st -order 

element, the sections strains 𝑒1 and 𝑒6 are constant, 𝑒4 and 𝑒5 need to be linear, 𝑒2 and 𝑒3 parabolic, 

thus eight strain sensors are required. The 0th-order element is chosen in this paper and location of 

strain sensors will be laid in the table 1. 

3. A Fuzzy Net for Measuring Flexible Truss 

The measuring method of the adaptive fuzzy network includes the two stages as follows: training 

stage of strain-displacement relationship in fuzzy network and its application stage. The training will 

start after determining the most relevant strains corresponding to the selected displacements.  
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There are four procedures in the training stage of the adaptive fuzzy network: Adding membership 

functions and rules; Deleting membership function and rules; Tuning of the consequents of adaptive 

ruler; Solidifying the rule base. They are described in detail as follows. 

3.1 Adding Membership Functions and Rules 

On the basis of systematic current error (root mean square (RMS) error in this paper) and ε-

completeness (ε=0.5), we can judge whether the fuzzy network need add the membership function or 

not. The membership function will be added if the current systematic current error is greater than the 

default or the minimum value less than the default ε in the corresponding maximum membership 

degree of all the input data. 

In the process of generating rules, the membership function of the maximum membership degree 

in the current input strain data is defined as the antecedent of the rule and the corresponding 

deformation displacement will be regarded as the consequent of the rule. One rule is created every 

time. A rule could be denoted as Eq. (7) assuming that one nodal of the beam element at one certain 

moment is associated with N strain values: 

 Rule i:  IF x1 is A1
i1  and x2 is A2

i2 … xN is AN
iN , THEN y = ai                                                          (7)

Where, Av
iv ∈ {Av

1 , Av
2 , … , Av

nv} is the membership function of the maximum membership degree of 

the input strain hereinafter; nv and ai are the number of membership function of the input strain and 

consequent of ith-rule, respectively. Thus, the displacement output of the nodal at k moment is: 

 Y=
∑ aiμi(x⃗ (k))
Nrules
i=1

∑ μi(x⃗ (k))
Nrules
i=1

= ∑ ai∅i
Nrules
i=1                                                                                                    (8) 

Where,  x⃗ (k) = (x1(k), x2(k), … , xN(k)), Nrules , and μi  are the number of fuzzy rules and 

activation degree of ith-rule, respectively. 

3.2 Deleting Membership Functions and Rules 

Adapter deletion for membership functions and rules is added in fuzzy network to avoid the 

problems such as computation complexity increasing and learning efficiency decreasing due to 

increasing the membership functions and rules blindly. 𝐶𝑖  And  𝑆𝑖  are defined as the rate of 

contribution of rule and deletion index, respectively: 

𝐶𝑖 =
|𝑦𝑖|

∑ |𝑦𝑖|
𝑁𝑟𝑢𝑙𝑒𝑠
𝑖=1

                                                                                                                                 (9) 

 𝑆𝑖 = {
𝑆𝑖
′𝜏            𝑖𝑓          𝐶𝑖 < 𝛽

𝑆𝑖
′              𝑖𝑓           𝐶𝑖 ≥ 𝛽

                                                                                                   (10) 

Where,  yi = ai∅i, Si
'is the value at the previous step, 𝜏(0<𝜏 < 1)and β are attenuation factor and 

threshold of update, respectively. 𝑆𝑖 Is initialized to 1, default the deletion threshold, δ. The rule 

should be deleted under the condition that 𝑆𝑖 is less than . The nodal of the adjacent membership 

function should be adjusted in time after the rule is deleted with the purpose of maintaining the 

distribution continuity of the membership functions. 

3.3 Tuning of the Consequent of Adaptive Ruler 

When the error of the current deformation displacement due to estimating and measuring is 

relatively large, the consequent of the rule should be adjusted with reward and penalty: 

∆𝑎𝑖(𝑘) = 𝜎 ∗ 𝜇𝑖(𝑘 − 1)(𝑟(𝑘 − 1) − 𝑦(𝑘))                                                                                 (11) 

where, ∆ai(k) denotes the adjusted consequent of the rule at k moment; μi(k-1) and  r(k-1) are 

the activation of ith-rule and the measured deformation displacement at 𝑘 − 1 moment, respectively; 

 y(k) is the estimated displacement of the system at the current k moment;  σ is a constant for tuning 

the rule; the value of this constant has effect on adjusting the convergence rate of strategy and 

displacement accuracy of net output. 

 

3.4 Solidifying the Rule Base 

When the training of the adaptive fuzzy network can meet the given precision, the rule base of the 

current strain-displacement relationship is saved. After that, the deformation displacements of the 

measured nodal points at the given precision will be acquired through the saved rule base, which input 

data are the corresponding strains associated with the measured nodal points (Fig.2). 
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Fig. 2 The flow chart of training the adaptive fuzzy net 

4. Experimental Validation 

The 2m truss under the excitation of different static loads is analyzed to evaluate the accuracy of 

the proposed fuzzy network measured methodology. The truss structure is made of aluminum alloy, 

which Young’s modulus is Poisson ratio is 0.3, density is 2557KG/m3 and the radius of the girder is 

7 mm. The truss deformation displacements and strains information are gathered by the strain 

collected system and the displacement collected system respectively (Fig.3).  

 
Fig.3 Measured system and truss (A. Displacement collected; B. Truss; C. Strain collected) 

 
Fig.4 Truss and loads (A. Load; B. Girder) 
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The strain collected system is composed of strain gauge, amplifier and signal collection board and 

the displacement collected system is composed of the dynamic 3D optical measurement instrument 

with high precision (NDI Optrotrak ertus).The girder of the truss is divided into six elements. Because 

the strain gauges can be placed anywhere along the beam surface, their distributions for every element 

in this paper are summarized in Table 1. 

The free end of the truss girder is statically loaded by a series of different concentrated loads (Table 

2). Regarding the zero loading as the zero of the measurement system, the corresponding strains and 

displacements are derived under different loads. From the total 19 sets of loaded data (Fig.4),12 sets 

are selected randomly and then imported into the adaptive fuzzy network, which are trained to obtain 

the rule base of strain-displacement relationship.  

As the applied data, the remainder 7 sets of data will be used to validate the effectiveness of the 

fuzzy network. The loads are shown in Table 2. Every set of data comprises of 10 strain values and 

10 displacement values selected randomly from the measured system. 

Table 2. Loading (KG) 

 1 2 3 4 5 6 7 8 9 10 11 12 

Train 1 1.2 1.8 2.2 3.2 3.7 5 5.2 5.6 6.4 7 7.5 

Test 0.6 1.6 3 4.3 4.8 6 7.3      

To verify the effectiveness of the fuzzy network, the deformation displacement accuracy of the 

first beam element of the girder is measured because there are the same structure and material for 

every element of the truss (As shown in Fig.5). The transformation relation of displacement-strain is 

deduced by inputting the length of the beam element, the material parameter, the pasted location of 

strain gauges and the measured nodal point of displacement (the right node in the element) into Eq. 

(5). 

 
Fig. 5 The first beam element and its measurement points (A. The measured nodal point of 

displacement; B. Location of section strain and strain gauge; C. Constraint) 

 

Table 3. Transformational relation matrix of displacement-strain 

T 𝑒𝜀1  𝑒𝜀2  𝑒𝜀3  𝑒𝜀4  𝑒𝜀5  𝑒𝜀6  

𝑢 0.1163 0 0.1163 0 0 0 

𝑣 0.371 -0.116 -0.717 0 0.347 -0.116 

𝑤 0.586 0.067 0.014 -0.134 -0.64 0.067 

𝜃𝑥 -11.63 33.24 -11.63 33.24 -11.63 33.24 

𝜃𝑦 -28.83 0.003 0.0017 -0.0059 28.83 0.003 

𝜃𝑧 16.64 0.005 -33.29 0 16.65 -0.005 

 

In Table. 3, 𝑢, 𝑣 and 𝑤 denote the displacements at 𝑦 = 𝑧 = 0; 𝜃𝑥 , 𝜃𝑦  and 𝜃𝑧  are the rotations 

about the three coordinate axes (Fig.4). In the table, the sum of the three weights of strain sensor 

locations 𝑒𝜀1, 𝑒𝜀3 and  𝑒𝜀5, represent about 100%, 86.1%, 82.2%,  26%,  99.8% and  99.98% in six 

kinematic variables, respectively. The focus is put on the corresponding strain displacements 
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associated with three displacement components, 𝑢, 𝑣 and 𝑤 as the current displacement measured 

system can only get the displacement without the rotations. For displacement of the vertical direction, 

 w , the absolute of the weight of eε4  is slightly greater than eε3 . Moreover, the curvature of the 

external beam surface due to small error of strain measured, eε3 is still chosen as input data of fuzzy 

network instead ofeε3. 

 
Fig. 6 Distribution of membership function of strain 

 

The distribution of the membership functions of the selected three strain values in fuzzy network 

are shown in Fig.6, and the system errors between the measured displacements and displacements 

that deduced in training and application stages of the fuzzy network are shown in Fig. 7(a~ c). The 

error of displacement between the measured and fuzzy network deduced along y axis is less than that 

along the other two axes. The errors are about 0.19 mm in training stage and 0.2 mm in application 

stage, respectively. However, the errors along z axis are greater than x and y axes, the errors about 

1.7 mm in training stage and 1.77 mm in application stage, respectively. The reason is the direction 

of the static loads along z axis, and the main deformation of the truss girder is the vertical down 

bending, thus the relative displacement in vertical is much greater than the other two directions. 

Moreover, it is important to observe the error tend figures that the error between actual measured and 

fuzzy network deduced decreases with the deformation displacement increasing, and the applicability 

of using the fuzzy network to measure the large deformation of flexible truss has been illustrated. 

 

 
Fig. 7a Error of displacement u in fuzzy net training stage 
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Fig. 7b Error of displacement v in fuzzy network 

 
Fig. 7c Error of displacement w in fuzzy network 

 

The deformation displacement error of the first three beam elements in direction Z is obtained by 

using the fuzzy network method to measure the second and third elements of the girder (Figure.4). 

The errors in network’s training and application stages are 4.23 mm and 4.58 mm, respectively 

(Table.4).  

Table 4. Errors of deformation displacement of the first three elements 

 Training error of w Implication error of w 

1-st element 1.70mm 1.77mm 

2-nd element 4.66mm 4.32mm 

3-rd element 5.39mm 6.42mm 

The first three elements 4.23mm 4.58mm 

 

It can be found that the error between the displacement deduced by the fuzzy network and the 

actually measured displacement increases with the sequence number of the girder element increasing. 

This is mainly because the distance between the beam element and the fixed constraint increases with 

the sequence number of the girder element increasing. Moreover, combing with the gap between the 

joints of elements, the strain of the element decreases. Then, the nodal displacement of the beam 

element was influenced by the prior element rotation primarily. Meanwhile, since the 4th beam 

element, the displacement led by the prior element rotation will be the main factor to affect the current 

element (Figure.8). Therefore, an important problem to be solved will be how to delete the influence 

produced by beam element deeply before the network training.  
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Fig.8 Deformation displacement of girder in direction Z 

5. Conclusion 

In search of a suitable algorithm for use in real-time recovering the deformation of the truss, an 

adaptive fuzzy network method has been formulated to perform the shape-sensing of 3D truss 

structures undergoing static deformation. The fuzzy network trains the displacement-strain 

relationship by using the selected nodal displacement and the strain measured data selected optimally 

by IFEM. 

The experiment shows that the proposed fuzzy network method has a high accuracy in estimating 

the deformation of truss girder element in the fixed constraint and loads. But with the distance 

between the element and the constraint increasing, the relation between the strain and displacement 

is weakened gradually. The displacement produced by the element rotation increases predominantly 

due to decreasing the accuracy of the network training. Therefore, the future work will make focus 

on how to reduce the error brought by the element rotation and how to increase the accuracy of 

recovering the deformation of the truss structure. 
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