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Abstract. According ACE_TASK technical solutions to achieve a single internal software bus speed 

data transfer capabilities. First ACE_TASK framework of the research, design, message block format 

used to transmit data, and to implement a message queue mechanism. Then, by introducing flexible 

bus interface based ACE_TASK framework, elaborated software bus for message forwarding, task 

scheduling, data transfer and other processing principles, and finally explain the process control 

system program. 
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1. Introduction 

Software bus is the foundation platform software system, provides for the development of the 

upper functional modules, and integrated software framework for interoperability. Soft bus needs to 

solve two key technologies, multi-machine data exchange between functional modules and 

high-speed data transmission between the single function within the module. This paper achieves the 

functional software bus from the single aspect. 

2. ACE_TASK framework 

Based ACE_TASK soft bus modules are designed for the active object in the manner of operation, 

ACE initiative object inherits from ACE_Task. Here ACE_Task and active objects. 

ACE_TASK ACE is the base class for active objects; all objects must be derived from active 

ACE_TASK class. ACE_TASK dealing with objects, so more conducive to construct OO (Oriented 

Object) program, resulting in better OO software, it can be said ACE_TASK like a more advanced, 

more object-oriented thread class. Therefore, ACE_TASK used as: higher thread (task may be called); 

Active Object pattern of active objects. 

Active objects is relative to the traditional "passive objects" is concerned. Passive object is the 

traditional object, they are passive snippet, the object code segment in the calling object thread is 

executed, and the calling thread is temporarily "loaned" to execute the code of the passive object. The 

active object has its own separate thread; it can be used to perform the method of any of their calls. 

The image of that, the active object is the traditional passive object inside more than one or more 

threads. Put another way, if the main thread calls the object's method is passive, call blocking 

(synchronous); and if the call is a method active object calls without blocking (asynchronous). 

Each active object comprises one or more threads, there is an underlying message queue, to 

communicate between the active object through the message queue. 

3. Task communication mechanisms between modules 

Data transmission task between modules is mainly done through the message queue. To improve 

the efficiency of data transfer between modules, packaged into a message block of data for 

transmission. Sent to the next task module according to message blocks task configuration, software 

module bus output message queue for further processing. Data for the entire system in the form of a 

message stream for transmission. 

3.1 Message Block format 

The data system is packed into a message block transfer format. Message block contains a 

message head and a data block. 
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a) Head on behalf of the message type, there are two, one represents the custom data type, and the 

other a control message. If the data is of a type of message block scheduling system based on the type 

of data to pass data to the response processing module. If the message is a control message with a 

block, the system responds to the control message, in which case the contents of the data block can be 

empty. You can customize the message header, which helps to extend system functions. Issues 

involved in the first part of the message and its meaning in the following table 1: 

Table 1. Table header Meaning 

 
b) The actual data is not stored in a data block, but a pointer to the actual data memory area, so that 

the data blocks can be shared by multiple message blocks, as shown in Figure 1. 
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Figure 1. Message Block Format 

Figure 1, the message block message block 1 and 2 points to the same data memory area, when the 

message block 1 is dealt with, simply re-set the message header becomes a message block 2, block 2 

to process messages tasks module. Thus, the data communication between the software modules does 

not need to copy data, just pass the message block containing the data buffer pointer on it. This 

approach to data transfer by passing the pointer, which greatly improves the speed of data 

transmission, measurement and control system can meet the performance requirements of the A/D 

sampling module and other high-speed data streaming. 

Message Block class provides several ways to message block operation; the main methods are as 

follows in Table 2: 

Table 2. Operation of message function block  

msg_type（ （ Get/set the message type

base（ （ A pointer to the first block of data

release（ （ Release Message Block

wr_ptr（ （ /rd_ptr（ （
The next point to write/read data location 

pointer

length（ （
Returns the total size of the data blocks of 

data

method Function

 
The above method, the read and write pointers are very important, and very prone to error. wr_ptr 

point to the beginning of the valid data, which is next write position data; rd_ptr point to the end of the 

valid data, which is next read location data, as shown in Figure 2. Two pointers require the 

programmer to manage and maintain, are not automatically updated. So if you want to add data to the 
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message block, the need to ensure wr_ptr in the data header, after writing the write pointer to move to 

the head of valid data for next written correctly. 

wt_ptrrd_ptr

 
Figure 2. The read and write pointers 

3.2 Message Queue implementation 

Message queues are the main channels for data transmission between modules task, and also a key 

part of the soft bus. Each module in the system is assigned a task message queue, you can read the 

data maintained by the message queue, the data can be inserted into other tasks modules message 

queue. When the data provider module generates data, packed into the message block is inserted into 

the message queue consumer module, Consumers module removed from the message queue for 

processing. If the message queue is empty, the consumer will be blocked from going to sleep 

(ACE_TASK auto-complete); once the message block is inserted into the team, it will wake up the 

consumer, for processing. 
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Figure 3. Message streaming schematic 

Figure 3 is a schematic diagram between A/D module and carrier tracking module for message 

streaming through the message queue. FIG message queue is part of the carrier tracking module, A/D 

module will generate the message block is inserted into the message queue, module carrier tracking 

poll the message queue, the message blocks found will be removed after processing. 

Message Queuing has the following functions and features: 

a) Message Queuing decoupled producers and consumers of the message flow. 

Because the data transmission between the modules through the message queue, the software 

modules can be handled independently, without regard to the working status of other modules, which 

facilitate the development of decoupling and parallel module. 

b) Having a "FIFO" Features 

Message queues have similar hardware characteristics "FIFO" structure follows the FIFO 

principle message blocks, message queue data read and write operations simultaneously in a cache. In 

order to achieve real-time data transmission and integrity, message queue structure, the data read 

speed of greater than or equal to the input speed data. 

c) You can be configured flow control 

Figure 3 Message Queue set two thresholds: the dotted line represents the high-water; the solid 

line indicates a low water level. In order to control the message queue message block traffic in the 

message queue designed water level to control incoming messages. High water level is used to 

determine the maximum capacity of the message queue, when the amount of data exceeds the high 

water level, the input module obstruction, stop the input data. When the capacity of the message 

queue data set below the low water level, the data input module can continue to enter data into the 

queue. 
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Here is the main method of message queue class: 

class MsgQueue:public ACE_Message_Queue 

{ 

MsgQueue( ); 

~MsgQueue( ); 

… 

enqueue_msg(ACE_Message_Block* mb);// Insert message block 

dequeue_msg(ACE_Message_Block* mb); // Remove Message Block 

SetHighWater(size_t);// Setting message queue high water level 

SetLowWater(size_t);// Setting message queue low water level 

GetHighWater( );// Get the message queue high water level 

SetLowWater( );// Get the message queue low water level 

… 

} 

4. High speed data transmission 

Under the control of the program, modules based on the soft bus interface frameworks transfer 

data through software bus, these modules together to complete the task of the system. System 

function modules independently developed according to the interface framework, individuals are 

independent from each other, need to control the main functional modules connected in a certain 

order to complete the function of the system. Function system control program is very simple, the 

main function modules to configure the system according to the task to be achieved, then start the 

function modules, the system can run. The system control process shown in Figure 4: 

Start
Tasks module 
instantiation

System 
configuration tasks

Concurrent 
processing data

End

Tasks module 
startup

 
Figure 4. Process Control System 

5. Summary 

In this paper, high-speed data stream for the measurement and control system front-end based 

ACE_TASK research program, complete stand-alone high-speed data transfer software bus. First 

ACE_TASK framework of the research, design, message block format used to transmit data, and to 

implement a message queue mechanism, and finally illustrates the flow of the system control 

program. 
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