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Abstract. In this paper, in order to calculate the acoustic scattering of the duct, a thin-body boundary 

element method (BEM) has been proposed and the velocity obtained by the acoustic velocity 

formulation is use1d as the Neumann boundary condition on a rigid scattering surface. The radiated 

sound pressure and the scattering effect of the solid wall on the propagation of the sound wave are 

calculated by using the Kirchhoff formulation and the thin-body BEM, respectively. Computational 

results for a monopole source verify the method. The sound pressure directivity and scattering effect 

are shown to demonstrate the applicability and validity of the approach. 
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1. Introduction 

Noise pollution has become an annoying problem in recent years and a great deal of progress has 

been made to predict the noise generated by rotating blade. In these applications, in order to evaluate 

the sound pressure for any observer location, the incident sound field and the scattering sound field 

should be considered. 

Scattering bodies located near sources can convert some of their intense energy near field into the 

form of sound waves whose amplitudes are far greater than that of the incident field [1]. Several 

numerical and analytical methods have been applied to predict the acoustic scattering in turbo 

machinery, aircraft engines and the rotor noise by the airframe.  

The acoustic Boundary Element Method has been applied to solve acoustic radiation and scattering 

problem in the exterior and interior closed domain for long time [2, 4]. However, the traditional BEM 

has difficulty in solving the problem of thin body as the meshes on two sides are quite close. Thus, by 

constructing an imaginary surface in the acoustic domain, researchers divide it into interior and 

exterior part and then the Helmholtz Integral Equation [5, 6] can be applied.  

This method need to calculate of acoustic velocity or the acoustic pressure gradient on the 

scattering surface to meet the boundary condition. A direct numerical evaluation of the pressure 

gradient can be expensive for realistic cases. Ghorbaniasl et al. [7] obtained an acoustic velocity 

formulation based on the Kirchhoff formulation, which could be used as the boundary condition in 

this method and then improve the computational efficiency.   

The layout of this work is as follows: firstly, the total sound pressure is divided into the incident 

and scattered pressure. Secondly, the thin-body BEM is built up and the incident and scattered 

pressure are calculated respectively. Thirdly, acoustic scattering performance of a duct for a 

monopole source is studied and some useful conclusions have been made. 

2. Thin-body Acoustic Boundary Element Method 

The thin-body acoustic BEM is a way to compute the far field acoustic pressure. The total sound 

pressure in the far field can be computed by summing the incident and scattered pressure.  

( , ) ( , ) ( , )I SP x P x P x                                                                                                                 (1) 

Where P  is the total sound pressure in the frequency domain, and the incident pressure IPand the 

scattered pressure SP  are also in the frequency domain. The incident sound pressure can be calculated 
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by using Eq. (2) and transformed into frequency dominant data by executing Fast Fourier Transform 

[8].  
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The scattered sound pressure can be solved by using BEM. The calculated domain is shown in the 

Fig.1, the surface of the duct is represented as S  and the imaginary s  is assumed to make the duct 

closed and divide the whole domain into two parts: the interior subdomain D and an exterior 

subdomain D . The sound pressure outside the surface S s is denoted by P  and that on the inside 

is denoted by P
 . The integral equation can be used to each subdomain [9]. 

 
Fig. 1 A diagram of acoustic scattering by a thin-body. 

The thin-body boundary integral equation can be obtained: 
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Where 1 2/ / /n n n        , and since the continuous boundary conditions of the pressure and 

its partial derivation on the imaginary surface s are used, one obtains the following relation 
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The assumption of acoustic rigid boundary conditions is applied over the entire surface S  
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Then Eq. (4) and Eq. (5) can be simplified to  
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The two unknowns ( , )P x  and ( , )P x   are not obtained only by solving the Eq. (9). 

Differentiating Eq. (8) with regard to the direction of normal vector ( )n x , it can be transformed into  
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In order to calculate the acoustic pressure at any filed point, Eq.(10) is solved to get the sound 

pressure jump ( , ) ( , )P y P y    on the surface S and substituted into Eq.(9). Then the acoustic 

pressure on both sides of the duct could be easily obtained. However, the value of 
( , )

( )

IP x

n x




cannot be 

obtained easily by using Eq. (2). We can acquire it indirectly by using the acoustic velocity 

formulation. If Eq. (11) satisfies the Neumann boundary condition, one has 
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Where  1 2 3( , ), ( , ), ( , )nv a x a x a x     for the acoustic sources and ia  could be get by the 

following equation: 
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3. Numerical results 

In this test case, the comparison of the analytical solution and the numerical algorithm of a 3-D 

monopole source is used to verify the algorithm. The monopole is identified with a pulsating sphere as 

the small sphere with a radius. The pressure fluctuation induced by the pulsating sphere is expressed 

by a harmonic spherical wave 
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Where  and k are angular velocity and the wave number, respectively, and 
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The velocity is given by 
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Where 24A a U . To perform this case, the radius of the spherical penetrable data surface sr is 

assumed as 3.25 a . The speed of sound 0c is 340m/s. The density for medium is 1.2kg/m3. The 

angular velocity of the source is 340rad/s. The other parameters are a =0.01m and U =8m/s. The 

pulsating sphere is located at the center of the duct. The diameter of the duct is 0.07m. The length of 

the duct is 0.5m. The observer distance is assumed to be 1m.  

The x , y and z components of the acoustic velocity obtained with the velocity formulation are 

calculated by using the numerical method. The results are compared with analytical solutions for 

different observer time which are plotted in Figs.2. From Figs.2, we find that the numerical solutions 

are in very good agreement with the analytical solution, which could be used in the next procedure. To 

perform the acoustic scattering problems of the duct, we use the thin-body BEM. Fig.3 shows the 

scattering performance of the pulsating sphere. The left is the incident sound pressure, the right is the 

scattering effect of the duct and the middle is the total sound pressure. The sound pressure is 

expressed as dB (decibels) and the predicted SPLs (sound pressure levels) is given by the following 

20lg e

r
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SPLs

P
                                                                                                                                    (16) 

Where is predicted pressure, denotes the reference pressure and equals to 2×10-5Pa. 
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Fig.2 The calculated ,x y and z  component of acoustic velocity compared with that of the analytical 

solution. 
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Fig.3 Directivity of calculated far-field SPLs at 4918 Hz (a) free field, (b) scattering effect of the duct 

and (c) total field.  

The Fig.3 shows the directivity of the incident sound pressure is circular as the property of 

monopole sound source. When the scattering effect is considered, the directivity of the sum sound 

becomes non-circular but still symmetrical. For the angle (-45 to 45 degrees and 135 to 235 degrees), 

SPLs of the total field is louder due to scattering where at the angle (45to 135 degrees and 235 to 315 

degrees), it is slightly louder. It shows that the sound pressure is strengthened largely in the direction 

of duct both ends and that in the direction of the wall is relatively small. 
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4. Conclusion 

This paper develops the thin-body BEM method for calculating the scattering effect of a duct 

numerically. The acoustic velocity formulation can be utilized as boundary condition for thin-body 

BEM. Furthermore, a verification study is given. For the monopole source, due to the scattering effect, 

the amplitude of SPLs is greater and directivity is changed from circular to symmetrical. 
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