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Abstract. According to the differential equations of heat conduction on cylindrical and spherical 

coordinate system, numerical solution of the discrete formula on cylindrical and spherical coordinate 

system with high accuracy were derived. Compared with the analytical solution, this discrete formula 

was verified with a high degree of accuracy. To make the complex dispersion coefficient of diffusion 

term θ more concrete in spherical coordinates, this paper derived the discretion coefficient of 

diffusion term θ by the first mean value theorem of integral. The accurate schemes provide a good 

reference for researchers whose work in solving the equation of heat conduction of three-dimensional 

cylindrical coordinates and spherical coordinates, and it will provide accurate numerical schemes and 

the theoretical basis for solving practical engineering problems. 

Keywords: Differential equation of heat conduction; Spherical coordinate; Numerical heat transfer; 
the first mean value theorem for integral. 

1. Introduction 

Numerical Heat Transfer has been widely used to solve practical complex heat transfer 

calculations [1-3]. The important thing to solve the problem was how to discrete the thermal 

conductivity differential equations. Numerical Heat Transfer in two-dimensional cylindrical 

coordinates and polar coordinates equation of heat conduction were applied widely. When referring 

to the discretion schemes of three-dimensional cylindrical and spherical coordinates, now there is not 

a relatively discrete format for it [4, 5]. 

At the present, when it comes to the questions of cylinder and sphere in numerical heat transfer, it 

is just simplified into the radial or two-dimensional polar coordinates, which caused a lot of 

inconvenience in computation, promotion and application. Therefore, it is very important for us to 

solve to the three-dimensional cylinder coordinates thermal conductivity partial differential 

equations and thermal conductivity of the sphere of partial differential equations. This paper derived 

high precision cylindrical coordinates and spherical coordinate’s equation of heat conduction discrete 

schemes and compared with one-dimensional analytical solution to verify the accuracy of the 

numerical solution.  

2. Problem description 

The partial differential equations for heat conduction was established in the Cartesian coordinate 

system and the energy principle and Fourier's [6] law was used. Then we will have thermal 

conductivity of partial differential Eq. (1) as follows: 
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Where λ is thermal conductivity, c is the heat capacity of the thermal conductivity, S is inner heat 

source. 

The cylindrical coordinate system Eq.(2) and the spherical coordinate system Eq.(3) of the 

differential equations[6] are described as follows:  
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In general, there are two methods to discrete the equation of heat conduction, that is, Taylor series 

expansion method and finite volume method. In order to ensure the physical significance [7, 8], this 

paper will derive the thermal conductivity of partial differential equations by finite volume method. 

3. Literature References 

First, multiply r on both sides of the Eq.(2), then the integral equation in control volume and 

unsteady time items are shown in Figure1. The Eq.(2) changed into Eq.(4) as follows: 
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Fig.1 Cylindrical coordinates control volume 

3.1 The integral of the unsteady terms  

After integrating we can gain the unsteady term in the following forms: 
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3.2 The integral of the diffusion terms r, φ, z 

After integrating the diffusion terms into the following forms: 
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3.3 The integral of the source term 
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Here, the discrete equations will be solved by the techniques for linear equation, it is sufficient to 

express the average value S as: 

PPC TSSS                                                                                                                                 (10) 
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where, SC stands for the constant part of S, SP is the coefficient of TP. 

3.4 The discrete Equation for cylinder 

With the linearized source expression, the discrete equation would changed into the Eq.(4) as 

having the form: 

bTaTaTaTaTaTaTa DDBBSSNNWWEEPP                                                                        (11) 
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At this point, it is interesting to examine the physical significance of the various coefficients in the 

discrete equation. The neighbor coefficients aE, aW, aN, aS, aE, aD represent the conductance between 

the point P and the corresponding neighbors. The term 00

PPTa  is the internal energy contained in the 

control volume at time t. The constant term b consists of this internal energy and the rate of heat 

generation in the control volume resulting from SC. The ΔV is the volume of the control volume. The 

center-point coefficient aP is the sum of all neighbor coefficients and contains a contribution from the 

linearized source term. 

4. The discrete control equation of spherical coordinates 

At this stage, multiply r2sin2θ on both sides of the Eq.(2), then the integral equation that was in 

control volume and unsteady time items points are shown in Figure 2.The new equation is as follows: 

 
Fig.2 Spherical coordinate control volume 
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4.1 The integral of the unsteady terms 

  After integrating the unsteady term into the following forms: 
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4.2 The integral of the diffusion terms r, φ 

After integrating the diffusion term r, φ becomes the following forms: 
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4.3 Application integral mean value theorem derive the diffusion term θ 

In the derivation of the integral term, this paper use the integral mean value theorem which will 

derive the diffusion term θ scientifically and reasonably. 

Obviously, the heat flux that leaves one control volume through a particular face must be identical 

to the flux that enters the next control volume through the same face. Otherwise, the overall balance 

would not be satisfied. It is the fact that the energy across the interface θe to θw continuously, so the 

heat conduction equation can be thought as a continuity equation. Because of the diffusion 

term ],0[ πθ  , it happens for ],0[ πθ , and we have 0sin θ . Based on the above two conditions of 

continuity and 0sin  , which satisfied the integral mean value theorem[9], the diffusion term θ and 

Eq.(3) are changed as the following ],[ ew  shows,  so that the θ conduction term denotes: 
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It can be seen that when   is much smaller, the value P  . 
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4.4 The integral of the source term 

After integrating the source term S becomes the following forms: 
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4.5 The discrete Equation for sphere 

The discrete equation can easily be seen as follows: 

bTaTaTaTaTaTaTa DDBBSSNNWWEEPP                                                                         (19) 
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With the different express, the terms of Ea , Wa , Na , Sa , Ba , Da , P , 
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PPTa etc. are the same as the 

part 3 shown. 
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5. Numerical value comparison 

5.1 Application of discrete equations and grid independent analysis 

To illustrate the workings of the discrete equations this paper gives a detailed example of 

cylindrical heat conduction. The inner and outer diameter of the cylinder were R1 and R2 The 

temperature of the inside and outside of the cylinder was T1 and T2 and the radial heat conduction 

analytical solution is as follows:  
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We consider it as a steady and three-dimensional cylinder, and the heat constant cylindrical 

boundary conditions (the problem data) are as follows: 
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The numerical computed in this paper as well as the analytical solutions are compared in Figure3. 

Given the coarseness of the triangle that numerical solution gives reasonable agreement with the 

analytical solution, the error between the numerical and analytical solution was 8.86×10-3%. 
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Fig.3 Analytical solution and numerical solution     Fig.4 Grids number and error relations 

 

To quantify the accuracy of the reconstruction formulas between numerical solution and analytical 

solution we define the relative error as: 
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Where the error means the error between the solutions of the governing equations, and T refers to 

the solutions by means of the analytical solution; Tnum refers to the solutions by means of the 

numerical solution. 

The error means L2-norm [10]: 2
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Based on the error obtained from grid-independent solution [11], the relation between the equation 

error and grid number is shown in Figure 4. When the grid number reaching 5000, the calculation 

error control is less than 1%; with the encryption of the grid, the calculation error is reduced gradually. 

The analytical solution error is 8.86×10-3%, the choice of computational grid number is 

37×20×16=11840. 
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5.2 The validation of the thermal equation of the sphere 

To illustrate the workings of the sphere equations, this paper gives a detailed example of sphere 

heat conduction. The inner and outer diameter were R1 and R2. The temperature of the inside and 

outside of the sphere was T1 and T2. 

We consider it as a steady and three-dimensional sphere, and the heat constant boundary 

conditions (the problem data) are as follows: 
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The numerical computed in this paper as well as analytical solutions are compared in Figure5. 

Given the coarseness of the triangle that numerical solution gives reasonable agreement with the 

analytical solution, the error between the numerical and analytical solution was 0.53%. 
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Fig.5 Analytical solution and numerical solution    Fig.6 Grids number and error relations 

 

Based on the error obtained from grid-independent solution, the relation among the equation error 

and grid number is shown in Figure 6. When the grid number reaching 12000, the calculation error 

control is less than 1%; with the encryption of the grid, the calculation error is reduced gradually. The 

analytical solution error is 0.5%, the choice of computational grid number is 47×20×12=11280. 

6. Conclusion 

According to the three-dimensional equation of heat conduction of the cylinder and sphere, this 

paper derived the high-accuracy computational discrete scheme with the finite volume method. In the 

process of the discrete sphere, this paper uses the integral mean value theorem reasonably, which has 

derived the complex diffusion term more strictly. The new three-dimensional cylindrical coordinates 

and spherical coordinates provide numerical calculation discrete scheme, which will provide a good 

reference for the researchers. The application of numerical calculation discrete scheme is written in 

FORTRAN computer language, which is of stable operation and simple application. This paper have 

contrasted and analyzed the error, which was controlled within 0.5%. All the work has provided a 

high-precision numerical calculation discrete scheme for teaching and scientific research. 
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