

The research and implementation of The Critical Path on a Processor
(CPOP) Algorithm based on Pi calculus

He Yuan a, Yongzhe Zhao b and Hui Kang c, *

College of Computer Science and Technology, Jilin University, Changchun 130012, China

ayhsweetlife@163.com, byongzhe@jlu.edu.cn, ckanghui@jlu.edu.cn

Abstract. Task scheduling algorithms in heterogeneous computing environment often provide

limited performance owing to their low efficiency. This paper models and implements the first two

phases of the Critical Path (CP) on a Processor Algorithm with the functional programming paradigm.

Firstly, an overall research is conducted on the CPOP algorithms, then the logical relationship of the

first two phrases of the algorithm is modeled based on Pi calculus theories, and finally the algorithm

is implemented by nPict programming language. The experimental results demonstrate that the

implementation efficiency of the new programming algorithm is higher than that of the traditional

C++ language. Therefore, Pi calculus can be applied to the three phases of the CPOP algorithm to

improve the task scheduling efficiency. This paper aims to prove that the CPOP algorithm can be

more efficient than ever by using Pi calculus, through modeling and comparing the topological

structures of the different types of task scheduling models.

Keywords: Heterogeneous system; Task scheduling algorithm; Pi calculus; nPict.

1. Introduction

Currently, the heterogeneous computing system plays a more and more important role in dealing

with complex problems in both industrial production area and ecommerce area. Heterogeneous

computer clusters, which support the execution of parallel applications, are implemented in

heterogeneous systems to complete the task quickly. The efficiency and the load balancing of the

running parallel applications depend on the way in which the tasks are scheduled onto the processors.

However, the task scheduling problem is an NP-complete problem, so it is impossible to be

accomplished in polynomial time. Therefore, the researchers are studying how to make the scheduling

algorithm more efficient and effective. Now, the task scheduling algorithm can be divided into

heuristic method and random search, and the former in a heterogeneous system can be further divided

into list scheduling Heuristics (HEFT) [2], clustering heuristics and task Duplication Heuristics. The

CPOP algorithm [2] is a representative heuristic algorithm. This paper focus on the realization of the

algorithm and the assignment relationships understanding among tasks.

This paper studies on the task scheduling algorithm in heterogeneous system, then models the first

two phases of the CPOP algorithm using the Pi calculus theory, and finally implements the algorithm

with nPict language. By carrying out an experimental comparison between traditional language and

new parallel programming language, it turned out that the distributed concurrent Pi calculation and

the nPict language are more efficient than the traditional high-level language during processing

distributed tasks. Furthermore, it would be interesting to explore whether this implementation method

can be extended to the last phase of the CPOP algorithm in a heterogeneous system.

1.1 Dag.

the parallel application is represented by a directed acyclic graph, or DAG [12], defined by the

tuple (T, E), {T = {ti | i ∈ [1, n]}, and it is a set of all the nodes in DAG, each node representing each

task of the distributed application. E = {𝑒i | 𝑖 ∈ [1, 𝑚] , 𝑒𝑖 = (𝑡𝑠 , 𝑡𝑒) , 𝑡𝑒 ∈ succ(𝑡𝑠)}, and each edge

𝑒𝑖 = (𝑡𝑠 , 𝑡𝑒) representing a precedence constraint and a communication message between two tasks.

Definition 1.1 The recursive definition of upward rank of a task is 𝑟𝑎𝑛𝑘𝑢(𝑛𝑖) = 𝑤𝑖̅̅ ̅ +
max

𝑛𝑗∈𝑠𝑢𝑐𝑐(𝑛𝑖)
(𝑐𝑖,𝑗̅̅ ̅̅ + 𝑟𝑎𝑛𝑘𝑢(𝑛𝑗)). The recursive definition of node downward rank of a task is rank𝑑(𝑛𝑖) =

max
𝑛𝑗∈𝑝𝑟𝑒𝑑(𝑛𝑖)

{𝑟𝑎𝑛𝑘𝑑(𝑛𝑗) + 𝑤𝑗̅̅ ̅ + 𝑐𝑗,𝑖̅̅̅̅ }.

The upward rank value of exit nodes is equal to w𝑒𝑥𝑖𝑡̅̅ ̅̅ ̅̅ ̅. 𝑤𝑖̅̅ ̅ represents the average computation cost

of task 𝑛𝑖 . 𝑐𝑖,𝑗̅̅ ̅̅ represents the average communication cost from task 𝑛𝑖 to task 𝑛𝑗 . s𝑢𝑐𝑐(𝑛𝑖)

International Conference on Computer Engineering, Information Science & Application Technology (ICCIA 2016)

© 2016. The authors - Published by Atlantis Press 337

represents the set of immediate successors of task 𝑛𝑖 . 𝑝𝑟𝑒𝑑(𝑛𝑖) represents the set of immediate

predecessors of task 𝑛𝑖.

1.2 The CPOP Algorithm.

As a typical algorithm of list scheduling heuristics, the CPOP algorithm consists of three parts.

The first part is the task prioritizing phase, in which upward rank and downward rank values for every

task in DAG are computed and the sum of them will be the priority value of every task. Then the

scheduling queue will be drawn up in order of decreasing priority. The second part is to select the CP

processor. The CP is defined as the path from an entry task to an exit task for which the sum of the

computation costs of tasks and the communication costs of edges is maximal. The communication

costs on the same processor are too small to be ignored. So the sum of computation costs of the tasks

located on the CP determines the lower bound of the final schedule length. The processor of the CP

is the one that minimizes the cumulative computation costs of the tasks on the CP. The third part is

to deal with nodes not located on CP considering an insertion-based scheduling policy. The selected

task on the CP is scheduled on the processor of the CP. The rest of tasks is assigned to a processor

which ensures the shortest execution finish time of task nodes.

The process of the CPOP algorithm is defined as follows: (the first two phases)

(1) First, set the computation time of every node in DAG and the communication time of tasks.

(2) Compute upward rank value (𝑅𝑎𝑛𝑘𝑢) of the nodes.

(3) Compute downward rank value (𝑅𝑎𝑛𝑘𝑑) of the nodes.

(4) Compute the priority list of the nodes, which is equal to 𝑅𝑎𝑛𝑘𝑢 + 𝑅𝑎𝑛𝑘𝑑.

(5) Find out the children nodes whose priority are equal to that of the CP value from entry node.

(6) Select the processor which minimizes the earliest finish time.

2. Preliminaries and computational model

2.1 Pi Calculus.

Pi calculus [9] is proposed by Professor Milner, a Turing Award Laureate. This theory promotes

the communication process calculus and allows to transfer the name of a channel in communication,

enabling the Pi calculus to describe the runtime changes of the communication topological structure.

Thus Pi calculus has strong ability of expression and inherits the concise semantic theory of CCS,

bisimulation. Therefore, it has been used in the design of programming language and the analysis and

verification of distributed systems. This paper uses programming with lists of Pi calculus [13].The

nodes in the DAG are signified by the elements of the list in the modeling.

Fig.1 DAG node list structure

i : The location of task; 𝑃1, 𝑃2 … , 𝑃𝑛 : The list of the parent task; 𝐶1, 𝐶2 … , 𝐶𝑛: The list of the child

task; comp: The computation cost of task.

Parent task and child task use the same structure of list as shown in Fig.2. The list structure of the

priority queue is showed in Fig.3.

Fig.2 The list structure of node 𝐶𝑖 and 𝑃𝑖 (i: The location of task; comm: The communication cost of

the task)

338

Fig.3 The list structure of priority queue (i: The location of task; Rank: The priority value of the

task)

2.2 Modeling.

The following is the description of system behaviors: 𝑆𝑦𝑠𝑡𝑒𝑚 ≝ 𝑆𝑡𝑒𝑝1. 𝑆𝑡𝑒𝑝2. 𝑆𝑡𝑒𝑝3. 𝑆𝑡𝑒𝑝4

𝑺𝒕𝒆𝒑𝟏 Computing 𝑹𝒂𝒏𝒌𝒅

𝑃 ≝ 𝑠𝑒𝑛𝑑̅̅ ̅̅ ̅̅ ̅ < 0, 𝑟, 𝑑 > |𝑄 (1)

𝑄 ≝ 𝑠𝑒𝑛𝑑(𝑚, 𝑡, 𝑑). 𝑡̅ < 𝑛𝑐 >. 𝑐(𝑐𝑜𝑚𝑝, 𝑙). 𝑠𝑒𝑛𝑑1̅̅ ̅̅ ̅̅ ̅̅ < (𝑐𝑜𝑚𝑝 + 𝑚), 𝑙, 𝑑 > |𝑆|𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑡 > (2)

𝑆 ≝ 𝑠𝑒𝑛𝑑1(𝑟, 𝑙, 𝑑). 𝑙 ̅ < 𝑛𝑐 >. 𝑐(𝑥, 𝑙′). 𝑥̅ < 𝑛𝑐 > 𝑐(𝑐𝑜𝑚𝑚, 𝑙′′). 𝑑̅ < 𝑛′𝑐′ >. 𝑐′(𝑥′, 𝑑′). 𝑑′̅ < 𝑛′𝑐′ >
 𝑐′(𝑑𝑟𝑎𝑛𝑘, 𝑑′′). 𝑠𝑒𝑛𝑑2̅̅ ̅̅ ̅̅ ̅̅ < (𝑟 + 𝑐𝑜𝑚𝑚), 𝑑𝑟𝑎𝑛𝑘, 𝑙′′, 𝑑′′ > |𝑇|𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑙 >
 |𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑥 > |𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑑 > |𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑑′ > (3)

𝑇 ≝ 𝑠𝑒𝑛𝑑2(𝑟𝑎𝑛𝑘, 𝑑𝑟𝑎𝑛𝑘, 𝑙, 𝑑). (𝑖𝑓(𝑟𝑎𝑛𝑘 > 𝑑𝑟𝑎𝑛𝑘) ⇒ (𝑑𝑟𝑎𝑛𝑘 = 𝑟𝑎𝑛𝑘). 𝑠𝑒𝑛𝑑3̅̅ ̅̅ ̅̅ ̅̅ <
 𝑑𝑟𝑎𝑛𝑘, 𝑙, 𝑑 > |𝑅) (4)

 𝑅 ≝ 𝑠𝑒𝑛𝑑3(𝑟, 𝑙, 𝑑). (𝐶𝑎𝑠𝑒 𝑙 𝑜𝑓 𝑁𝑖𝑙? ⇒ 𝐷𝑂𝑊𝑁̅̅ ̅̅ ̅̅ ̅̅ ̅ < 𝑑 >

𝐸𝑙𝑠𝑒 ⇒ 𝑠𝑒𝑛𝑑̅̅ ̅̅ ̅̅ ̅ < 𝑟, 𝑙, 𝑑 > |𝑄) (5)

𝑺𝒕𝒆𝒑𝟐 Computing 𝑹𝒂𝒏𝒌𝒖

𝑃 ≝ 𝑟𝑒𝑐𝑣̅̅ ̅̅ ̅̅ < 0, 𝑟, 𝑢 > |𝑄

𝑄 ≝ 𝑟𝑒𝑐𝑣(𝑚, 𝑡, 𝑢). 𝑡̅ < 𝑛𝑐 >. 𝑐(𝑐𝑜𝑚𝑝, 𝑙). 𝑟𝑒𝑐𝑣1̅̅ ̅̅ ̅̅ ̅̅ < (𝑐𝑜𝑚𝑝 + 𝑚), 𝑙, 𝑢 > |𝑆)|𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑡 >

𝑆 ≝ 𝑟𝑒𝑐𝑣1(𝑟, 𝑙, 𝑢). 𝑙 ̅ < 𝑛𝑐 >. 𝑐(𝑥, 𝑙′). 𝑥̅ < 𝑛𝑐 > 𝑐(𝑐𝑜𝑚𝑚, 𝑙′′). 𝑙′′̅ < 𝑛𝑐 > 𝑐(𝑐𝑜𝑚𝑝, 𝑙′′′). 𝑢̅ < 𝑛′𝑐′

>. 𝑐′(𝑥′, 𝑢′). 𝑐′(𝑥′, 𝑢′). 𝑢′̅ < 𝑛′𝑐′ > 𝑐′(𝑢𝑟𝑎𝑛𝑘, 𝑢′′). 𝑟𝑒𝑐𝑣2̅̅ ̅̅ ̅̅ ̅̅

< (𝑟 + 𝑐𝑜𝑚𝑚 + 𝑐𝑜𝑚𝑝), 𝑢𝑟𝑎𝑛𝑘, 𝑙′′, 𝑢′′ >. 𝑇|𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑙 > |𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑥
> |𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑙′′ > |𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑑 > 𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑑′ >

𝑇 ≝ 𝑟𝑒𝑐𝑣2(𝑟𝑎𝑛𝑘, 𝑢𝑟𝑎𝑛𝑘, 𝑙, 𝑢). if(rank > urank) ⇒ (𝑢𝑟𝑎𝑛𝑘 = 𝑟𝑎𝑛𝑘). 𝑟𝑒𝑐𝑣3̅̅ ̅̅ ̅̅ ̅̅ < 𝑢𝑟𝑎𝑛𝑘, 𝑙, 𝑢 > |𝑅)

𝑅 ≝ 𝑟𝑒𝑐𝑣3(𝑟, 𝑙, 𝑢). (𝐶𝑎𝑠𝑒 𝑙 𝑜𝑓 𝑁𝑖𝑙? ⇒ 𝑈𝑃̅̅ ̅̅ < 𝑢 > 𝐸𝑙𝑠𝑒 ⇒ 𝑟𝑒𝑐𝑣̅̅ ̅̅ ̅̅ < 𝑟, 𝑙, 𝑢 > |𝑄)

𝑺𝒕𝒆𝒑𝟑 Computing Rank

𝑃 ≝ 𝐷𝑂𝑊𝑁(𝑑). 𝑈𝑃(𝑢). 𝑔𝑒𝑡𝑅𝑎𝑛𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ < 𝑑, 𝑢, 𝑟 > |𝑅

𝑅 ≝ 𝑔𝑒𝑡𝑅𝑎𝑛𝑘(𝑑, 𝑢, 𝑟). 𝑑̅ < 𝑛𝑐 >. 𝑐(𝑥, 𝑑′). 𝑢̅ < 𝑛𝑐 >. 𝑐(𝑦, 𝑢′). 𝑟̅ < 𝑛𝑐 >. 𝑐(𝑧, 𝑟′). (𝑧 = (𝑥 + 𝑦)).

𝑔𝑒𝑡𝑅𝑎𝑛𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ < 𝑑′, 𝑢′, 𝑟′ > |𝑅|𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑑 > |𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑢 > |𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑟 >

𝑺𝒕𝒆𝒑𝟒 Selecting the CP processor

𝑃 ≝ 𝑓𝑖𝑛𝑑𝐶𝑃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ < 𝑟𝑎𝑛𝑘, 𝑙, 𝑟 > |𝑅

𝑅 ≝ 𝑓𝑖𝑛𝑑𝐶𝑃(𝑟𝑎𝑛𝑘, 𝑙, 𝑟). 𝑙 ̅ < 𝑛𝑐 >. 𝑐(𝑥, 𝑙′. 𝑟̅ < 𝑛𝑐 >. 𝑐(𝑦, 𝑟′). 𝑦̅ < 𝑛𝑐 >. 𝑐(𝑟𝑎𝑛𝑘′, 𝑟′′). 𝑓𝑖𝑛𝑑𝐶𝑃1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ <
 𝑟𝑎𝑛𝑘, 𝑟𝑎𝑛𝑘′, 𝑙′, 𝑟′′ > |𝑆|𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑙 > |𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑟 > |𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑦 >

𝑆 ≝ 𝑓𝑖𝑛𝑑𝐶𝑃1(𝑟𝑎𝑛𝑘, 𝑟𝑎𝑛𝑘′, 𝑙, 𝑟). 𝑖𝑓(𝑟𝑎𝑛𝑘 = 𝑟𝑎𝑛𝑘′) ⇒ 𝑙 ̅ < 𝑛𝑐 >. 𝑐(𝑥, 𝑙′). 𝐶𝑃̅̅ ̅̅ < 𝑥 >
 |𝑇|𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑙 > |𝑓𝑖𝑛𝑑𝐶𝑃2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ < 𝑟𝑎𝑛𝑘, 𝑙′, 𝑟 > |𝑊

𝑇 ≝ 𝐶𝑃(𝑥). 𝜏

𝑊 ≝ 𝑓𝑖𝑛𝑑𝐶𝑃2(𝑟𝑎𝑛𝑘, 𝑙, 𝑟). (𝑐𝑎𝑠𝑒 𝑙 𝑜𝑓 𝑁𝑖𝑙? ⟹ 𝜀 𝐸𝑙𝑠𝑒 ⟹ 𝑓𝑖𝑛𝑑𝐶𝑃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ < 𝑟𝑎𝑛𝑘, 𝑙, 𝑟 > |𝑅).
Then this paper takes 𝑆𝑡𝑒𝑝1 as an example and introduce the whole modeling process of the list

programming. Pi calculus theory models based on process channel figure, which shows the real

spatial displacement in computing task nodes. Figure 4 is the process channel figure of 𝑆𝑡𝑒𝑝1 and the

modeling of 𝑆𝑡𝑒𝑝2 𝑆𝑡𝑒𝑝3 and 𝑆𝑡𝑒𝑝4 is similar to it.

Fig.4 Channel figure between progresses

339

Formula (1): Process P sends the beginning time, downward rank list and the children nodes list

of the entry node to Process Q through the channel send. Formula (2): Process Q sends the sum of the

computing cost of the present node and the received period to Process S through channel send1.

Formula (3): Process S works out result (r + comm) by adding the communication cost to the

received period and sends it to Process T with the drank value taken from the downward rank list

through channel send2. Formula (4): Process T compares the digits of rank and drank. If the former

is bigger, the value of the downward rank list will be updated, and the new drank list will be sent to

Process R through channel send3. Formula (5): Process R checks if the task node list (l) is empty. If

so, it means that ergodic process is finished, and the updated drank list will be sent to 𝑆𝑡𝑒𝑝2 through

channel down. And if not, it will be executed recursively to Process Q.

3. Implementation of CPOP algorithm

3.1 The First phase.

Procedure DownwardList(ln,ld,i)

Input:ln is a list of n tasks, ld is a null downward rank list of n

tasks, i is the location of the current task, count is the number of

tasks.

Output:ld is a downward rank list after updated.

 BEGIN

 for i = 1 to count do

 if i == count then

 send ld though channel DOWN

 else

 take the structure of current task from ln.

 take the downward rank value of current task from ld.

 update the list ld of children tasks

 END

Procedure UpwardList(ln,lu,i)

Input:ln is a list of n tasks, lu is a null upward rank list of n tasks,i is the location of the

current task， count is the number of tasks

Output:lu is a upward rank list updated.

 BEGIN

 for i = count to 1 do

 if i == 1 then

 send lu though channel UP

 else

 take the structure of current task from ln.

 take the upward rank value of current task from lu.

 update the list lu of parent tasks

 END

Compute Downward Rank List (ld):

(1) According to node position i, taking the element structure from the nodes list ln and the earliest

completion time of this node from the downward rank list ld, send the sum of computation cost of

present node and drank value to children nodes list of node i. If children nodes list is not empty,

continue the third step. If not, skip to the fourth step.

(2) If the value the child node received is bigger than its drank value, then update ld list and

recursively call second step.

(3) Print List ld.

Compute Upward Rank List (lu):

(1) According to position i, taking the structure of this node, and then taking the earliest completing

time of this node, finally send computation cost of present node to node i’s father node list, if father

node list is not empty, enter the third step; if not, skip to the forth step.

(2) Choosing maximum sum value of arrival time of father node, communication cost of children

node and computation cost of father node to update to lu list.

(3) Print List lu.

3.2 The Second phase: select processor.

Procedure Selected(ln,lr)

Input:ln is a list of n tasks, lr is a priority rank list of n tasks

Output:pid is the serial number of the CP processor

 BEGIN

 Let the initial task n be entry task and let |CP| be priority value of entry task

 while task n is not exit task do

 Select the task from children tasks where priority value of task = |CP|

 Let the CP task list contain the selected task

 Let task n be the selected task

 endwhile

 Select the CP processor which minimizes finished time of the CP task list

 END

(1) Initial state: Starting from entry node, to search the child node, which the node priority is equal

to that of parent node. Once found, skip to second step; if children nodes list is empty, algorithm ends.

(2) Print the serial number of the CP processor.

340

4. Experiment and analysis

Allowing for the complicated topology of task DAG figure, this paper respectively imitates five

conditions of 10,20,30,40 and 50 nodes. Each case simulates two topologies of depth-first and width-

first DAG figure to do comparison. The topology of depth-first means the depth of DAG is larger

than width of DAG. Width-first is a type of experimental comparison based on DAG which shows

the width is much greater than depth. Depth-first means the depth is much greater than width.

In the centos 6.5 operating system of Linux platform, with memory of 1g and hard disk of 20g, an

experiment on the nPict and C++ implementation of the CPOP algorithm is carried out. Referring to

the Linux system, real time is wall clock time of process from start to finish of the call, including time

slices used by other processes and time the process spends blocked (waiting time of entering IO).

User time is the amount of CPU time spent in the user mode (outside the kernel) within the process,

which is only actual CPU time of executing the process. Sys time is the CPU time spent in the kernel

within the process. It means executing CPU time spent in system call within the kernel.

4.1 Width-first with horizontal comparison.

Fig.5 and Table 1 are the real time comparison after experimenting on five conditions. As shown

in Fig.5, under circumstances of the same number of nodes, the time nPict cost is far less than that of

C++, with the average difference of more than 200ms. Allowing for the extra time spent on operating

system process call, nPict is still superior to C++. With increase of nodes, the time advantage remains

great. Thus when the number of nodes is more than 50, nPict’s efficiency is much higher than C++.

Table 1 Width-first real time comparison (ms)

Number of nodes C++ nPict

10 365.8 92.4

20 373.6 105

30 389.1 124.1

40 397.1 133.8

50 400.0 148.1

Fig.5 Width-first real time comparison (ms)

Figure 6 and Table 2 are user time contrast of the CPOP algorithm experiment in breadth-first case.

As can be seen from the figure, nPict language is still more efficient than C++ language in user time.

User time is actual CPU time spent by executing the program, excluding blocked time of process.

Table 2 Width-first user time comparison (ms)

Number of nodes C++ nPict

10 306.6 84.3

20 307.2 96.4

30 305.5 115.5

40 310.8 125.3

50 309.6 138.3

341

Fig.6 Width-first user time comparison (ms)

Figure 7 and Table 3 are sys time contrast of the CPOP algorithm experiment in breadth-first case.

As a whole, sys time of nPict language occurrence trend is steady. In the meantime, the trend of C++

presents shock and irregular. That is because sys time is the time spent by system call in the kernel.

System call in nPict has outstanding performance.

Table 3 Width-first sys time comparison (ms)

Number of nodes C++ nPict

10 31.9 2.9

20 32.4 3

30 36.8 2.6

40 33.2 3

50 32.3 3

Fig.7 Width-first sys time comparison (ms)

4.2 Depth-first with longitudinal comparison.

Fig.8 and Table 4 shows, in case of depth-first, the longitudinal comparison of the real time that

implements the CPOP algorithm using two languages. Allowing for that real time is the actual time

of operating system process call, it includes the blocked state of other processes. So real time is longer

than user time and sys time. According to Fig 4.4, we can conclude that the efficiency of using nPict

to implement the algorithm is much better than using C++ when having the same number of nodes.

In addition, with the number of nodes increasing, the advantage in time still won’t decrease.

From perspective of time increase, the time interval of longitudinal depth-first is a little bit smaller

than that of horizontal width-first, and the general trend of longitudinal depth-first is more stable.

Thus it can be possible to conclude that when the number of nodes is above 50, the advantage of

this programming method this paper introduced in time is still in presence.

342

Table 4 Depth-first real time comparison (ms)

Number of nodes C++ nPict

10 384.7 96.8

20 391.2 104.6

30 398.3 129.3

40 399.2 135.2

50 408.9 149.4

Fig.8 Depth-first real time comparison (ms)

Fig.9 and Table 5 shows, in the case of depth-first, the longitudinal comparison on the user time

that implements the CPOP algorithm in two languages. According to Fig 4.5, the average

consumption of nPict is above 200ms less than that of C++.

Table 5 Depth-first user time comparison (ms)

Number of nodes C++ nPict

10 304.9 86.2

20 312.8 95.6

30 323.8 119.5

40 317.4 125.6

50 329.9 140.1

Fig.9 Depth-first user time comparison (ms)

Figure 10 and table 6 shows, in the case of depth-first, longitudinal comparison of the sys time that

implements CPOP algorithm in two languages. From perspective of the kernel mode time, nPict still

has the greater advantage. However, considering the changing curve of width-first sys time, in the

case of depth-first, with the increase of node, sys time becomes short and short, which indicates that

the time spent on system call is shorter. It indirectly suggests that the CPOP algorithm implemented

by nPict can be better implements at the depth-first DAG.

343

Table 6 Depth-first Sys Time Comparison (ms)

Number of nodes C++ nPict

10 41.3 5.5

20 36.5 3.8

30 36.7 3.9

40 35.1 3.8

50 33.4 3

Fig.10 Depth-first Sys Time Comparison (ms)

5. Conclusion

This paper firstly makes research on the task scheduling algorithm under heterogeneous system,

then exploits the Pi calculus theory to do modeling of first two phases of the CPOP algorithm, finally

implements with nPict language. By carrying out an experimental comparison between traditional

language and new parallel programming language, it turned out that distributed concurrent Pi

calculation and nPict language are more efficient than traditional high-level language in dispatching

and processing distributed tasks. It would also be interesting to see whether this implementation

method can extend to the last phase of the CPOP algorithm in a heterogeneous system.

References

[1]. Sewell P, Wojciechowski P T, Unyapoth A. Nomadic pict: Programming languages,

communication infrastructure overlays, and semantics for mobile computation. [J]. Acm

Transactions on Programming Languages & Systems, 2010, 32 (4): 163-172.

[2]. Topcuouglu H, Hariri S, Wu M Y. Performance-Effective and Low-Complexity Task

Scheduling for Heterogeneous Computing [J]. IEEE Transactions on Parallel & Distributed

Systems, 2002, 13 (3): 260-274.

[3]. Kang Y, Zhang D. A Hybrid Genetic Scheduling Algorithm to Heterogeneous Distributed

System [J]. Applied Mathematics, 2012, 03 (7): 750-754.

[4]. Pawel T. Wojciechowski.: Nomadic Pict Language Libraries Release 1.0-alpha December 18,

2000.

[5]. Pawel T. Wojciechowski.: The Nomadic Pict System Release 1.0-alpha Documentation and

user’s manual. December 19, 2000.

[6]. Wu M Y, Gajski D D. Hypertool: A Programming Aid for Message-Passing Systems [J]. Parallel

& Distributed Systems IEEE Transactions on, 1990, 1 (3): 330-343.

[7]. Pierce B C. Concurrent objects in a process calculus [C] Proceedings of the International

Workshop on Theory and Practice of Parallel Programming. Springer-Verlag, 1994: 187-215.

[8]. Pierce B C, Turner D N. Pict: A Programming Language Based on the Pi-Calculus [C] Proof,

Language & Interaction: Essays in Honour of Robin Milner. MIT Press, 2000: 455 - 494.

[9]. Milner, Robin. Functions as Processes. In Research Report 1154, INRIA, Sophia An- tipolis.

Final version." in J. Mathem. Struct. In Computer Science. (1990)

344

[10]. KANG Hui, ZHANG Shuang-shuang, MEI Fang.: Petri net translation of recursion π-calculus

[J].Journal of Jilin University Engineering and Technology Edition, 2014, 44 (1): 142-148.

[11]. Reakook Hwang, Mitsuo Gen, Hiroshi Katayama.: Comparison of multiprocessor task

scheduling algorithms with communication costs. ScienceDirect. (2008)

[12]. Stavrinides G L, Karatza H D. Scheduling multiple task graphs with end-to-end deadlines in

distributed real-time systems utilizing imprecise computations [J]. Journal of Systems &

Software, 2010, 83 (6): 1004-1014.

[13]. Milner R. Communicating and mobile systems - the Pi-calculus. [J]. Cambridge University Press

New York, 1999, 42 (2-3): 100-191.

[14]. Wojciechowski P T, Sewell P. Nomadic Pict: Language and Infrastructure Design for Mobile

Agents [C] International Symposium on Agent Systems and Applications, 1999 and Third

International Symposium on Mobile Agents. Proceedings. IEEE, 1999: 2-12.

[15]. Unyapoth A, Sewell P. Nomadic pict: correct communication infrastructure for mobile

computation [J]. Acm Sigplan Notices, 2001, 36 (3): 116 - 127.

345

