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Abstract. Task scheduling algorithms in heterogeneous computing environment often provide 

limited performance owing to their low efficiency. This paper models and implements the first two 

phases of the Critical Path (CP) on a Processor Algorithm with the functional programming paradigm. 

Firstly, an overall research is conducted on the CPOP algorithms, then the logical relationship of the 

first two phrases of the algorithm is modeled based on Pi calculus theories, and finally the algorithm 

is implemented by nPict programming language. The experimental results demonstrate that the 

implementation efficiency of the new programming algorithm is higher than that of the traditional 

C++ language. Therefore, Pi calculus can be applied to the three phases of the CPOP algorithm to 

improve the task scheduling efficiency. This paper aims to prove that the CPOP algorithm can be 

more efficient than ever by using Pi calculus, through modeling and comparing the topological 

structures of the different types of task scheduling models. 
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1. Introduction 

Currently, the heterogeneous computing system plays a more and more important role in dealing 

with complex problems in both industrial production area and ecommerce area. Heterogeneous 

computer clusters, which support the execution of parallel applications, are implemented in 

heterogeneous systems to complete the task quickly. The efficiency and the load balancing of the 

running parallel applications depend on the way in which the tasks are scheduled onto the processors. 

However, the task scheduling problem is an NP-complete problem, so it is impossible to be 

accomplished in polynomial time. Therefore, the researchers are studying how to make the scheduling 

algorithm more efficient and effective. Now, the task scheduling algorithm can be divided into 

heuristic method and random search, and the former in a heterogeneous system can be further divided 

into list scheduling Heuristics (HEFT) [2], clustering heuristics and task Duplication Heuristics. The 

CPOP algorithm [2] is a representative heuristic algorithm. This paper focus on the realization of the 

algorithm and the assignment relationships understanding among tasks. 

This paper studies on the task scheduling algorithm in heterogeneous system, then models the first 

two phases of the CPOP algorithm using the Pi calculus theory, and finally implements the algorithm 

with nPict language. By carrying out an experimental comparison between traditional language and 

new parallel programming language, it turned out that the distributed concurrent Pi calculation and 

the nPict language are more efficient than the traditional high-level language during processing 

distributed tasks. Furthermore, it would be interesting to explore whether this implementation method 

can be extended to the last phase of the CPOP algorithm in a heterogeneous system. 

1.1 Dag.  

the parallel application is represented by a directed acyclic graph, or DAG [12], defined by the 

tuple (T, E), {T = {ti | i ∈ [1, n]}, and it is a set of all the nodes in DAG, each node representing each 

task of the distributed application. E = {𝑒i | 𝑖 ∈ [1, 𝑚] , 𝑒𝑖 = (𝑡𝑠 , 𝑡𝑒) , 𝑡𝑒  ∈   succ(𝑡𝑠)}, and each edge 

𝑒𝑖 = (𝑡𝑠 , 𝑡𝑒) representing a precedence constraint and a communication message between two tasks.  

Definition 1.1 The recursive definition of upward rank of a task is 𝑟𝑎𝑛𝑘𝑢(𝑛𝑖) = 𝑤𝑖̅̅ ̅ +
max

𝑛𝑗∈𝑠𝑢𝑐𝑐(𝑛𝑖)
(𝑐𝑖,𝑗̅̅ ̅̅ + 𝑟𝑎𝑛𝑘𝑢(𝑛𝑗)). The recursive definition of node downward rank of a task is rank𝑑(𝑛𝑖) =

max
𝑛𝑗∈𝑝𝑟𝑒𝑑(𝑛𝑖)

{𝑟𝑎𝑛𝑘𝑑(𝑛𝑗) + 𝑤𝑗̅̅ ̅ + 𝑐𝑗,𝑖̅̅̅̅ }. 

The upward rank value of exit nodes is equal to w𝑒𝑥𝑖𝑡̅̅ ̅̅ ̅̅ ̅. 𝑤𝑖̅̅ ̅ represents the average computation cost 

of task 𝑛𝑖 .  𝑐𝑖,𝑗̅̅ ̅̅  represents the average communication cost from task 𝑛𝑖  to task 𝑛𝑗 . s𝑢𝑐𝑐(𝑛𝑖) 
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represents the set of immediate successors of task 𝑛𝑖 . 𝑝𝑟𝑒𝑑(𝑛𝑖) represents the set of immediate 

predecessors of task 𝑛𝑖. 

1.2 The CPOP Algorithm. 

As a typical algorithm of list scheduling heuristics, the CPOP algorithm consists of three parts. 

The first part is the task prioritizing phase, in which upward rank and downward rank values for every 

task in DAG are computed and the sum of them will be the priority value of every task. Then the 

scheduling queue will be drawn up in order of decreasing priority. The second part is to select the CP 

processor. The CP is defined as the path from an entry task to an exit task for which the sum of the 

computation costs of tasks and the communication costs of edges is maximal. The communication 

costs on the same processor are too small to be ignored. So the sum of computation costs of the tasks 

located on the CP determines the lower bound of the final schedule length. The processor of the CP 

is the one that minimizes the cumulative computation costs of the tasks on the CP. The third part is 

to deal with nodes not located on CP considering an insertion-based scheduling policy. The selected 

task on the CP is scheduled on the processor of the CP. The rest of tasks is assigned to a processor 

which ensures the shortest execution finish time of task nodes. 

The process of the CPOP algorithm is defined as follows: (the first two phases)  

(1) First, set the computation time of every node in DAG and the communication time of tasks. 

(2) Compute upward rank value (𝑅𝑎𝑛𝑘𝑢) of the nodes. 

(3) Compute downward rank value (𝑅𝑎𝑛𝑘𝑑) of the nodes. 

(4) Compute the priority list of the nodes, which is equal to 𝑅𝑎𝑛𝑘𝑢 + 𝑅𝑎𝑛𝑘𝑑. 

(5) Find out the children nodes whose priority are equal to that of the CP value from entry node. 

(6) Select the processor which minimizes the earliest finish time. 

2. Preliminaries and computational model 

2.1 Pi Calculus.  

Pi calculus [9] is proposed by Professor Milner, a Turing Award Laureate. This theory promotes 

the communication process calculus and allows to transfer the name of a channel in communication, 

enabling the Pi calculus to describe the runtime changes of the communication topological structure. 

Thus Pi calculus has strong ability of expression and inherits the concise semantic theory of CCS, 

bisimulation. Therefore, it has been used in the design of programming language and the analysis and 

verification of distributed systems. This paper uses programming with lists of Pi calculus [13].The 

nodes in the DAG are signified by the elements of the list in the modeling. 

 

 

Fig.1 DAG node list structure 

i : The location of task; 𝑃1, 𝑃2 … , 𝑃𝑛 : The list of the parent task; 𝐶1, 𝐶2 … , 𝐶𝑛: The list of the child 

task; comp: The computation cost of task. 

Parent task and child task use the same structure of list as shown in Fig.2. The list structure of the 

priority queue is showed in Fig.3. 

 

Fig.2 The list structure of node 𝐶𝑖 and 𝑃𝑖 (i: The location of task; comm: The communication cost of 

the task) 
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Fig.3 The list structure of priority queue (i: The location of task; Rank: The priority value of the 

task) 

2.2 Modeling.  

The following is the description of system behaviors: 𝑆𝑦𝑠𝑡𝑒𝑚 ≝ 𝑆𝑡𝑒𝑝1. 𝑆𝑡𝑒𝑝2. 𝑆𝑡𝑒𝑝3. 𝑆𝑡𝑒𝑝4 

𝑺𝒕𝒆𝒑𝟏 Computing 𝑹𝒂𝒏𝒌𝒅  

𝑃 ≝ 𝑠𝑒𝑛𝑑̅̅ ̅̅ ̅̅ ̅ < 0, 𝑟, 𝑑 > |𝑄                                                                                                                    (1) 

𝑄 ≝ 𝑠𝑒𝑛𝑑(𝑚, 𝑡, 𝑑). 𝑡̅ < 𝑛𝑐 >. 𝑐(𝑐𝑜𝑚𝑝, 𝑙). 𝑠𝑒𝑛𝑑1̅̅ ̅̅ ̅̅ ̅̅ < (𝑐𝑜𝑚𝑝 + 𝑚), 𝑙, 𝑑 > |𝑆|𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑡 >   (2) 

𝑆 ≝ 𝑠𝑒𝑛𝑑1(𝑟, 𝑙, 𝑑). 𝑙 ̅ < 𝑛𝑐 >. 𝑐(𝑥, 𝑙′). 𝑥̅ < 𝑛𝑐 > 𝑐(𝑐𝑜𝑚𝑚, 𝑙′′). 𝑑̅ < 𝑛′𝑐′ >. 𝑐′(𝑥′, 𝑑′). 𝑑′̅ < 𝑛′𝑐′ >
           𝑐′(𝑑𝑟𝑎𝑛𝑘, 𝑑′′). 𝑠𝑒𝑛𝑑2̅̅ ̅̅ ̅̅ ̅̅ < (𝑟 + 𝑐𝑜𝑚𝑚), 𝑑𝑟𝑎𝑛𝑘, 𝑙′′, 𝑑′′ > |𝑇|𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑙 >
          |𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑥 > |𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑑 > |𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑑′ >                                                     (3) 

𝑇 ≝ 𝑠𝑒𝑛𝑑2(𝑟𝑎𝑛𝑘, 𝑑𝑟𝑎𝑛𝑘, 𝑙, 𝑑). (𝑖𝑓(𝑟𝑎𝑛𝑘 > 𝑑𝑟𝑎𝑛𝑘) ⇒ (𝑑𝑟𝑎𝑛𝑘 = 𝑟𝑎𝑛𝑘). 𝑠𝑒𝑛𝑑3̅̅ ̅̅ ̅̅ ̅̅ <
           𝑑𝑟𝑎𝑛𝑘, 𝑙, 𝑑 > |𝑅)                                                                                                                       (4) 

  𝑅 ≝ 𝑠𝑒𝑛𝑑3(𝑟, 𝑙, 𝑑). (𝐶𝑎𝑠𝑒  𝑙  𝑜𝑓  𝑁𝑖𝑙? ⇒ 𝐷𝑂𝑊𝑁̅̅ ̅̅ ̅̅ ̅̅ ̅ < 𝑑 >  

𝐸𝑙𝑠𝑒 ⇒  𝑠𝑒𝑛𝑑̅̅ ̅̅ ̅̅ ̅ < 𝑟, 𝑙, 𝑑 > |𝑄)                                                       (5) 

𝑺𝒕𝒆𝒑𝟐 Computing 𝑹𝒂𝒏𝒌𝒖  

𝑃 ≝ 𝑟𝑒𝑐𝑣̅̅ ̅̅ ̅̅ < 0, 𝑟, 𝑢 > |𝑄 

𝑄 ≝ 𝑟𝑒𝑐𝑣(𝑚, 𝑡, 𝑢). 𝑡̅ < 𝑛𝑐 >. 𝑐(𝑐𝑜𝑚𝑝, 𝑙). 𝑟𝑒𝑐𝑣1̅̅ ̅̅ ̅̅ ̅̅ < (𝑐𝑜𝑚𝑝 + 𝑚), 𝑙, 𝑢 > |𝑆)|𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑡 > 

𝑆 ≝ 𝑟𝑒𝑐𝑣1(𝑟, 𝑙, 𝑢). 𝑙 ̅ < 𝑛𝑐 >. 𝑐(𝑥, 𝑙′). 𝑥̅ < 𝑛𝑐 > 𝑐(𝑐𝑜𝑚𝑚, 𝑙′′). 𝑙′′̅ < 𝑛𝑐 > 𝑐(𝑐𝑜𝑚𝑝, 𝑙′′′). 𝑢̅ < 𝑛′𝑐′

>. 𝑐′(𝑥′, 𝑢′). 𝑐′(𝑥′, 𝑢′). 𝑢′̅ < 𝑛′𝑐′ > 𝑐′(𝑢𝑟𝑎𝑛𝑘, 𝑢′′). 𝑟𝑒𝑐𝑣2̅̅ ̅̅ ̅̅ ̅̅

< (𝑟 + 𝑐𝑜𝑚𝑚 + 𝑐𝑜𝑚𝑝), 𝑢𝑟𝑎𝑛𝑘, 𝑙′′, 𝑢′′ >. 𝑇|𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑙 > |𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑥
> |𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑙′′ > |𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑑 > 𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑑′ > 

𝑇 ≝ 𝑟𝑒𝑐𝑣2(𝑟𝑎𝑛𝑘, 𝑢𝑟𝑎𝑛𝑘, 𝑙, 𝑢). if(rank > urank) ⇒ (𝑢𝑟𝑎𝑛𝑘 = 𝑟𝑎𝑛𝑘). 𝑟𝑒𝑐𝑣3̅̅ ̅̅ ̅̅ ̅̅ < 𝑢𝑟𝑎𝑛𝑘, 𝑙, 𝑢 > |𝑅) 

𝑅 ≝ 𝑟𝑒𝑐𝑣3(𝑟, 𝑙, 𝑢). (𝐶𝑎𝑠𝑒  𝑙  𝑜𝑓 𝑁𝑖𝑙?  ⇒ 𝑈𝑃̅̅ ̅̅ < 𝑢 > 𝐸𝑙𝑠𝑒 ⇒  𝑟𝑒𝑐𝑣̅̅ ̅̅ ̅̅ < 𝑟, 𝑙, 𝑢 > |𝑄) 

𝑺𝒕𝒆𝒑𝟑 Computing Rank 

𝑃 ≝ 𝐷𝑂𝑊𝑁(𝑑). 𝑈𝑃(𝑢). 𝑔𝑒𝑡𝑅𝑎𝑛𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ < 𝑑, 𝑢, 𝑟 > |𝑅 

𝑅 ≝ 𝑔𝑒𝑡𝑅𝑎𝑛𝑘(𝑑, 𝑢, 𝑟). 𝑑̅ < 𝑛𝑐 >. 𝑐(𝑥, 𝑑′). 𝑢̅ < 𝑛𝑐 >. 𝑐(𝑦, 𝑢′). 𝑟̅ < 𝑛𝑐 >. 𝑐(𝑧, 𝑟′). (𝑧 = (𝑥 + 𝑦)). 

𝑔𝑒𝑡𝑅𝑎𝑛𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ < 𝑑′, 𝑢′, 𝑟′ > |𝑅|𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑑 > |𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑢 > |𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑟 > 

𝑺𝒕𝒆𝒑𝟒 Selecting the CP processor 

𝑃 ≝ 𝑓𝑖𝑛𝑑𝐶𝑃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ < 𝑟𝑎𝑛𝑘, 𝑙, 𝑟 > |𝑅  

𝑅 ≝ 𝑓𝑖𝑛𝑑𝐶𝑃(𝑟𝑎𝑛𝑘, 𝑙, 𝑟). 𝑙 ̅ < 𝑛𝑐 >. 𝑐(𝑥, 𝑙′. 𝑟̅ < 𝑛𝑐 >. 𝑐(𝑦, 𝑟′). 𝑦̅ < 𝑛𝑐 >. 𝑐(𝑟𝑎𝑛𝑘′, 𝑟′′). 𝑓𝑖𝑛𝑑𝐶𝑃1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ <
         𝑟𝑎𝑛𝑘, 𝑟𝑎𝑛𝑘′, 𝑙′, 𝑟′′ > |𝑆|𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑙 > |𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑟 > |𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑦 >  

𝑆 ≝ 𝑓𝑖𝑛𝑑𝐶𝑃1(𝑟𝑎𝑛𝑘, 𝑟𝑎𝑛𝑘′, 𝑙, 𝑟). 𝑖𝑓(𝑟𝑎𝑛𝑘 = 𝑟𝑎𝑛𝑘′) ⇒ 𝑙 ̅ < 𝑛𝑐 >. 𝑐(𝑥, 𝑙′). 𝐶𝑃̅̅ ̅̅ < 𝑥 >
        |𝑇|𝐶𝑜𝑛𝑠(𝑉, 𝐿) < 𝑙 > |𝑓𝑖𝑛𝑑𝐶𝑃2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ < 𝑟𝑎𝑛𝑘, 𝑙′, 𝑟 > |𝑊  

𝑇 ≝ 𝐶𝑃(𝑥). 𝜏 

𝑊 ≝ 𝑓𝑖𝑛𝑑𝐶𝑃2(𝑟𝑎𝑛𝑘, 𝑙, 𝑟). (𝑐𝑎𝑠𝑒 𝑙 𝑜𝑓 𝑁𝑖𝑙? ⟹ 𝜀  𝐸𝑙𝑠𝑒 ⟹ 𝑓𝑖𝑛𝑑𝐶𝑃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ < 𝑟𝑎𝑛𝑘, 𝑙, 𝑟 > |𝑅). 
Then this paper takes 𝑆𝑡𝑒𝑝1 as an example and introduce the whole modeling process of the list 

programming. Pi calculus theory models based on process channel figure, which shows the real 

spatial displacement in computing task nodes. Figure 4 is the process channel figure of 𝑆𝑡𝑒𝑝1 and the 

modeling of 𝑆𝑡𝑒𝑝2 𝑆𝑡𝑒𝑝3 and 𝑆𝑡𝑒𝑝4 is similar to it. 

 
Fig.4 Channel figure between progresses 
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Formula (1): Process P sends the beginning time, downward rank list and the children nodes list 

of the entry node to Process Q through the channel send. Formula (2): Process Q sends the sum of the 

computing cost of the present node and the received period to Process S through channel send1. 

Formula (3): Process S works out result ( r + comm ) by adding the communication cost to the 

received period and sends it to Process T with the drank value taken from the downward rank list 

through channel send2. Formula (4): Process T compares the digits of rank and drank. If the former 

is bigger, the value of the downward rank list will be updated, and the new drank list will be sent to 

Process R through channel send3. Formula (5): Process R checks if the task node list (l) is empty. If 

so, it means that ergodic process is finished, and the updated drank list will be sent to 𝑆𝑡𝑒𝑝2 through 

channel down. And if not, it will be executed recursively to Process Q. 

3. Implementation of CPOP algorithm  

3.1 The First phase. 

Procedure DownwardList(ln,ld,i)

  

Input:ln is a list of n tasks, ld is a null downward rank list of n 

tasks, i is the location of the current task, count is the number of 

tasks.  

Output:ld is a downward rank list after updated.

 BEGIN

        for i = 1 to count do

               if i == count then 

                      send ld though channel DOWN

               else

                      take the structure of current task from ln.

                      take the downward rank value of current task from ld.

                      update the list ld of children tasks  

  END

        

Procedure UpwardList(ln,lu,i)

  

Input:ln is a list of n tasks, lu is a null upward rank list of n tasks,i is the location of the 

current task，  count is the number of tasks

Output:lu is a upward rank list updated.

 BEGIN

      for i = count to 1 do

            if i == 1 then 

                 send lu though channel UP

            else

                 take the structure of current task from ln.

     take the upward rank value of current task from lu.

                 update the list lu of parent tasks  

 END

         
Compute Downward Rank List (ld): 

(1) According to node position i, taking the element structure from the nodes list ln and the earliest 

completion time of this node from the downward rank list ld, send the sum of computation cost of 

present node and drank value to children nodes list of node i. If children nodes list is not empty, 

continue the third step. If not, skip to the fourth step.  

(2) If the value the child node received is bigger than its drank value, then update ld list and 

recursively call second step.  

(3) Print List ld. 

Compute Upward Rank List (lu): 

(1) According to position i, taking the structure of this node, and then taking the earliest completing 

time of this node, finally send computation cost of present node to node i’s father node list, if father 

node list is not empty, enter the third step; if not, skip to the forth step.  

(2) Choosing maximum sum value of arrival time of father node, communication cost of children 

node and computation cost of father node to update to lu list.  

(3) Print List lu. 

3.2 The Second phase: select processor. 

Procedure Selected(ln,lr)

  

Input:ln is a list of n tasks, lr is a priority rank list of n tasks

Output:pid is the serial number of the CP processor

 BEGIN

        Let the initial task n be entry task and let |CP| be priority value of entry task

        while task n is not exit task do

                Select the task from children tasks where priority value of task = |CP|

                Let the CP task list contain the selected task

                Let task n be the selected task

        endwhile

        Select the CP processor which minimizes finished time of the CP task list

 END

         
(1) Initial state: Starting from entry node, to search the child node, which the node priority is equal 

to that of parent node. Once found, skip to second step; if children nodes list is empty, algorithm ends. 

(2) Print the serial number of the CP processor. 
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4. Experiment and analysis 

Allowing for the complicated topology of task DAG figure, this paper respectively imitates five 

conditions of 10,20,30,40 and 50 nodes. Each case simulates two topologies of depth-first and width-

first DAG figure to do comparison. The topology of depth-first means the depth of DAG is larger 

than width of DAG. Width-first is a type of experimental comparison based on DAG which shows 

the width is much greater than depth. Depth-first means the depth is much greater than width. 

In the centos 6.5 operating system of Linux platform, with memory of 1g and hard disk of 20g, an 

experiment on the nPict and C++ implementation of the CPOP algorithm is carried out. Referring to 

the Linux system, real time is wall clock time of process from start to finish of the call, including time 

slices used by other processes and time the process spends blocked (waiting time of entering IO). 

User time is the amount of CPU time spent in the user mode (outside the kernel) within the process, 

which is only actual CPU time of executing the process. Sys time is the CPU time spent in the kernel 

within the process. It means executing CPU time spent in system call within the kernel. 

4.1 Width-first with horizontal comparison. 

Fig.5 and Table 1 are the real time comparison after experimenting on five conditions. As shown 

in Fig.5, under circumstances of the same number of nodes, the time nPict cost is far less than that of 

C++, with the average difference of more than 200ms. Allowing for the extra time spent on operating 

system process call, nPict is still superior to C++. With increase of nodes, the time advantage remains 

great. Thus when the number of nodes is more than 50, nPict’s efficiency is much higher than C++. 

Table 1 Width-first real time comparison (ms) 

Number of nodes C++ nPict 

10 365.8 92.4 

20 373.6 105 

30 389.1 124.1 

40 397.1 133.8 

50 400.0 148.1 

   

 

 
Fig.5 Width-first real time comparison (ms) 

 

Figure 6 and Table 2 are user time contrast of the CPOP algorithm experiment in breadth-first case. 

As can be seen from the figure, nPict language is still more efficient than C++ language in user time. 

User time is actual CPU time spent by executing the program, excluding blocked time of process. 

Table 2 Width-first user time comparison (ms) 

Number of nodes C++ nPict 

10 306.6 84.3 

20 307.2 96.4 

30 305.5 115.5 

40 310.8 125.3 

50 309.6 138.3 
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Fig.6 Width-first user time comparison (ms) 

 

Figure 7 and Table 3 are sys time contrast of the CPOP algorithm experiment in breadth-first case. 

As a whole, sys time of nPict language occurrence trend is steady. In the meantime, the trend of C++ 

presents shock and irregular. That is because sys time is the time spent by system call in the kernel. 

System call in nPict has outstanding performance.  

 

Table 3 Width-first sys time comparison (ms) 

Number of nodes C++ nPict 

10 31.9 2.9 

20 32.4 3 

30 36.8 2.6 

40 33.2 3 

50 32.3 3 

 

 
Fig.7 Width-first sys time comparison (ms) 

 

4.2 Depth-first with longitudinal comparison. 

Fig.8 and Table 4 shows, in case of depth-first, the longitudinal comparison of the real time that 

implements the CPOP algorithm using two languages. Allowing for that real time is the actual time 

of operating system process call, it includes the blocked state of other processes. So real time is longer 

than user time and sys time. According to Fig 4.4, we can conclude that the efficiency of using nPict 

to implement the algorithm is much better than using C++ when having the same number of nodes. 

In addition, with the number of nodes increasing, the advantage in time still won’t decrease. 

From perspective of time increase, the time interval of longitudinal depth-first is a little bit smaller 

than that of horizontal width-first, and the general trend of longitudinal depth-first is more stable.  

Thus it can be possible to conclude that when the number of nodes is above 50, the advantage of 

this programming method this paper introduced in time is still in presence. 
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Table 4 Depth-first real time comparison (ms) 

Number of nodes C++ nPict 

10 384.7 96.8 

20 391.2 104.6 

30 398.3 129.3 

40 399.2 135.2 

50 408.9 149.4 

 
Fig.8 Depth-first real time comparison (ms) 

Fig.9 and Table 5 shows, in the case of depth-first, the longitudinal comparison on the user time 

that implements the CPOP algorithm in two languages. According to Fig 4.5, the average 

consumption of nPict is above 200ms less than that of C++. 

 

Table 5 Depth-first user time comparison (ms) 

Number of nodes C++ nPict 

10 304.9 86.2 

20 312.8 95.6 

30 323.8 119.5 

40 317.4 125.6 

50 329.9 140.1 

 

 
Fig.9 Depth-first user time comparison (ms) 

Figure 10 and table 6 shows, in the case of depth-first, longitudinal comparison of the sys time that 

implements CPOP algorithm in two languages. From perspective of the kernel mode time, nPict still 

has the greater advantage. However, considering the changing curve of width-first sys time, in the 

case of depth-first, with the increase of node, sys time becomes short and short, which indicates that 

the time spent on system call is shorter. It indirectly suggests that the CPOP algorithm implemented 

by nPict can be better implements at the depth-first DAG. 
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Table 6 Depth-first Sys Time Comparison (ms) 

Number of nodes C++ nPict 

10 41.3 5.5 

20 36.5 3.8 

30 36.7 3.9 

40 35.1 3.8 

50 33.4 3 

 

 
Fig.10 Depth-first Sys Time Comparison (ms) 

5. Conclusion 

This paper firstly makes research on the task scheduling algorithm under heterogeneous system, 

then exploits the Pi calculus theory to do modeling of first two phases of the CPOP algorithm, finally 

implements with nPict language. By carrying out an experimental comparison between traditional 

language and new parallel programming language, it turned out that distributed concurrent Pi 

calculation and nPict language are more efficient than traditional high-level language in dispatching 

and processing distributed tasks. It would also be interesting to see whether this implementation 

method can extend to the last phase of the CPOP algorithm in a heterogeneous system.  

References 

[1]. Sewell P, Wojciechowski P T, Unyapoth A. Nomadic pict: Programming languages, 

communication infrastructure overlays, and semantics for mobile computation. [J]. Acm 

Transactions on Programming Languages & Systems, 2010, 32 (4): 163-172.  

[2]. Topcuouglu H, Hariri S, Wu M Y. Performance-Effective and Low-Complexity Task 

Scheduling for Heterogeneous Computing [J]. IEEE Transactions on Parallel & Distributed 

Systems, 2002, 13 (3): 260-274.  

[3]. Kang Y, Zhang D. A Hybrid Genetic Scheduling Algorithm to Heterogeneous Distributed 

System [J]. Applied Mathematics, 2012, 03 (7): 750-754. 

[4]. Pawel T. Wojciechowski.: Nomadic Pict Language Libraries Release 1.0-alpha December 18, 

2000. 

[5]. Pawel T. Wojciechowski.: The Nomadic Pict System Release 1.0-alpha Documentation and 

user’s manual. December 19, 2000. 

[6]. Wu M Y, Gajski D D. Hypertool: A Programming Aid for Message-Passing Systems [J]. Parallel 

& Distributed Systems IEEE Transactions on, 1990, 1 (3): 330-343.  

[7]. Pierce B C. Concurrent objects in a process calculus [C] Proceedings of the International 

Workshop on Theory and Practice of Parallel Programming. Springer-Verlag, 1994: 187-215.  

[8]. Pierce B C, Turner D N. Pict: A Programming Language Based on the Pi-Calculus [C] Proof, 

Language & Interaction: Essays in Honour of Robin Milner. MIT Press, 2000: 455 - 494.  

[9]. Milner, Robin. Functions as Processes. In Research Report 1154, INRIA, Sophia An- tipolis. 

Final version." in J. Mathem. Struct. In Computer Science. (1990) 

344



 

[10]. KANG Hui, ZHANG Shuang-shuang, MEI Fang.: Petri net translation of recursion π-calculus 

[J].Journal of Jilin University Engineering and Technology Edition, 2014, 44 (1): 142-148. 

[11]. Reakook Hwang, Mitsuo Gen, Hiroshi Katayama.: Comparison of multiprocessor task 

scheduling algorithms with communication costs. ScienceDirect. (2008) 

[12]. Stavrinides G L, Karatza H D. Scheduling multiple task graphs with end-to-end deadlines in 

distributed real-time systems utilizing imprecise computations [J]. Journal of Systems & 

Software, 2010, 83 (6): 1004-1014. 

[13]. Milner R. Communicating and mobile systems - the Pi-calculus. [J]. Cambridge University Press 

New York, 1999, 42 (2-3): 100-191.  

[14]. Wojciechowski P T, Sewell P. Nomadic Pict: Language and Infrastructure Design for Mobile 

Agents [C] International Symposium on Agent Systems and Applications, 1999 and Third 

International Symposium on Mobile Agents. Proceedings. IEEE, 1999: 2-12. 

[15]. Unyapoth A, Sewell P. Nomadic pict: correct communication infrastructure for mobile 

computation [J]. Acm Sigplan Notices, 2001, 36 (3): 116 - 127. 

345




