
Applying Sequential Pattern Mining to Portable RFID

System Data

Heikki Sjöman, Martin Steinert

Department of Engineering Design and Materials

Norwegian University of Science and Technology

Trondheim, Norway

heikki.sjoman@ntnu.no, martin.steinert@ntnu.no

Abstract—This paper presents how data mining can be

applied to RFID proximity tracking data captured in a

production setting. The WINEPI algorithm is explained and used

for mining sequential patterns from transaction data produced

by portable RF transceivers that can be attached, for example, to

the personnel and machines of a production facility. The

contribution of this paper is the additional mindset of how data

can be produced for a data warehouse with dedicated sensors in

order to prototype the data warehouse itself – and how we can

use this created knowledge as a help when designing intelligent

manufacturing systems.

Keywords—RFID;data mining; sequential patterns; intelligent

manufaturing; industry 4.0; data warehouses

I. INTRODUCTION

The standard data warehouses are in a way statically

related to the IT infrastructure as the data is often acquired

through quite rigid operational processes [1]. Creating a new

data warehouse is like developing a new product. It is context

dependent and we cannot confirm what the final requirements

of the system are and, according to Kimball & Ross, data

warehouses should especially adapt to constant change.

Furthermore, there is an irrational human as an end-user for

the data warehouse business intelligence systems [1].

Reference [2] describes early stage product development as a

multidisciplinary, iterative process that is ambiguous by nature

[3][4]. There might be situations where one needs to create a

new data warehouse quickly or to prototype data warehouses.

Technically this might be challenging since data warehouses

are traditionally based on data that is acquired from

operational systems. For modern data warehouses in

manufacturing and automation, there might be a need for a

more dynamic approach of creating data sets. When we are

designing systems where data warehouses are in the key roles,

we would like to optimize the design thereof, but it is

impossible since we do not have the data yet. For example,

there are challenges and needs in the industry to deploy RFID

systems, but it is not yet widely understood how the systems

would work in all manufacturing contexts and what the

benefits and costs, respectively, are [5]. We are proposing an

approach in addition to traditional method of building data

warehouses that is based on simulated or provided data. If we

create our own data cube dynamically, we allow ourselves to

explore different possibilities of creating the warehouse and

learn while at the same time we can deploy a wide range of

methods available in the data mining community. In this

paper we give one example of how this approach can be

applied, by building our own sensor-arrays in order to

relatively quickly create a data warehouse, as well as gather

test data. We build our own dedicated sensors by using

existing technology, we deploy them, we generate data, we

learn from it, and then we can use existing standard data

algorithms. In the bigger picture we are getting in a position

where we could be more independent of simulations of the

suppliers, or at worst avoid the situation of designing and

building systems without any data. This problem is often

encountered in product development: it is hard to design for an

imaginary, complex system and for its possible benefits while

the development is kept on an abstract level [2]. Challenges

like this could be overcome by initially pre-defining the data

warehouse more dynamically and loosely and through

prototyping learn about the future data structures of the new

data warehouse before taking the investment decision.

We are on the way of developing a general comprehensive

platform for gathering temporal relative proximity data. This

platform is flexible and can be easily modified to

accommodate new ideas and changes that appear in product

development. In order to prove the usefulness of this system,

we wanted to go through one full round of iteration in

developing of a system from the beginning until the data is

created and analyzed. We need tools to mine the produced

data so that it can instantly show the value for its users. We

define data mining as discovering interesting, and potentially

useful patterns from data through applying algorithms in order

to extract novel, previously hidden knowledge and relations

[7]. The WINEPI algorithm is applied to the experimental

dataset in order to test the possibilities of mining frequent

sequential patterns [8]. Our main emphasis is on the approach

of how data warehouses can be prototyped, tested, and how

their requirements subsequently can be improved based on this

early feedback for the overall system design, and therefore

create extra value.

International Workshop of Advanced Manufacturing and Automation (IWAMA 2016)

© 2016. The authors - Published by Atlantis Press 25

mailto:heikki.sjoman@ntnu.no
mailto:martin.steinert@ntnu.no

Following this introduction, the problem setting is

introduced, the ways of solving it are discussed, and the data

mining approach is described and applied. Finally, this paper

concludes with results, discussions and future work.

II. PROBLEM SETTING

We have developed a portable system that consists of both

active and passive RF transceivers. The active transceivers

gather and store data, and the passive ones act as transponders

respectively [9]. The devices are attached to different actors.

For instance, members of a manufacturing team can carry the

devices, or the devices can be fastened to objects, such as tools

and materials. The dataset used here is from tracking a test

group within an experiment. The raw data consists of

proximity values and time stamps between different devices

and is used as a proxy for human-human, human-machine and

machine-machine interactions in order to model activities in

sequences, for example, in workshop or factory settings. These

sequences, to mention a few, might include frequent routes

that are used in a factory, how often machines and resources

are used, or in what spatial or temporal order interactions

between these actors take place.

One of the devices (in prototype stage) is depicted in Fig.

1. It consists of basic electrical components and can be

optimized greatly in respect to size and energy efficiency. The

development thereof is not the focus, the devices rather show

how to relatively fast and cheaply create a data warehouse, as

well as actual data, and get feedback from it. The common

next step is to apply data mining techniques to the data.

In this paper we chose the following goal: We want to detect

frequent patterns and subsequently gain insights based on the

data, from two or more actors within one event, that consists

of four different distance ranges (0-1,5m; 1,5-3m; 3-5m; 5-

11m) and a time stamp.

Fig. 1. Parts of an active RF transceiver prototype [9].

Our test data is from an experiment where a group of

people uses facilities and workshops together or as individuals

throughout one day. There were eight different sensors

deployed as either static or active actors. The experiment day

mainly consists of small meetings, as well as working in the

workshop. Each sensor produce data point bursts every four

seconds (+random time of 0-1000ms) from where the distance

is estimated. In our experiment with eight device setup,

depending on the activity level of a tagged person or

equipment, each device produce approximately 28000 data

points per day Plotting the data helps humans to understand

the data gathered, but data mining reveals the possible

underlying hidden patterns for the interpreter. We need a tool

for recognizing sequential events and one is tested in the

following chapters.

III. COMPUTATION INTELLIGENCE APPROACH

Because we are dealing with real-time RF systems, there is

always some noise in the process of gathering data. This

means that before starting the mining part, we need to pre-

process the data and detect possible outliers. After this step,

one can proceed to choose the algorithm. A graphical view of

our raw data is given in Fig. 2. We wanted to deploy one of

the original algorithms in sequential pattern mining to try out

our approach. The WINEPI algorithm was originally

developed for mining telecommunication network alarm logs

in order to find sequential patterns from the data [8]. After a

thorough research, this algorithm seemed to be a good

alternative for mining interaction patterns from our data as

well. Many of the algorithms created later are based on ideas

of this sequential pattern-mining algorithm. With the WINEPI

algorithm we can identify rules, compute their strengths and

confidence intervals. It can detect both parallel and serial

event episodes and can be applied with some modifications for

multiple sequences [10].

Fig. 2. Graphical view of our experimental data set of interaction data in a

course of one day.

IV. SOLUTION PROCEDURE

In this section we define the formal concepts and notations

that we will use to describe our mining methods. We also

describe and explain the main points of the algorithm by using

a descriptive pseudo algorithm. The solution is implemented

in MATLAB R2014. Generally WINEPI algorithm moves a

user-defined time window over the whole data set and count

serial and parallel occurrences of actors present on a time

stamp. After one pass over the data set it creates all the

combinations of possible episodes for the next iteration, but

prunes the candidates down based on the frequent patterns of

26

the preceding iteration. We follow the basic definitions

introduced by Mannila, Toivonen and Verkamo in formally

defining the original alarm sequences but modified to our

context [3].

A. Definitions

1) A time point is an integer that represents the

occurrence time of the interaction between two devices.

2) Time interval is a continious sequence with a range of

time points such that [ta, tb] ≡ {t: ta ≤ t ≤ tb}. The duration of

the time interval can also be called as the width of the

interval: w = |tb - ta|

3) Given a class of actor types X, an interaction point is a

pair of terms (a,t) where a∈X and t is the time point

represented by a unix time stamp integer. An interaction

sequence is an ordered set of interaction events defined as S =

{(a1,t1),(a2, t2),...,(an,tn)}, such that ai∈X for all i=1,2,...,n, and

ti≤ ti+1 for all i=1,...,n - 1.

4) Let C be a set of interaction episodes with respect to

actor ak. Let s be a set of the distinct interaction events a1

a2,...,an such that s⊆X. When the threshold of minimum

support is defined, the episode s is frequent if frequency (s) ≥

user defined minimum support.

B. Main Algorithm

Episodes in the framework can be parallel, serial or

combinations of these two. The first does not require a partial

order in order to be recognized, but the second requires

temporal order. Furthermore, each event must occur within a

certain period of time. In practice, this is a user-defined time

window that slides over the interaction sequence data and the

algorithm is counting the occurrences of episodes within these

windows. Frequency for each episode is calculated based on

these counts of in how many windows the episode have been

fully present out of the all windows over data. In other words,

the algorithm finds all the sequential patterns that satisfy the

predefined time constant, and whose frequency is exceeding a

user set minimum frequency. The pseudo code for the main

algorithm is presented in Fig. 3.

Fig. 3. Main algorithm of WINEPI [7]

The algorithm runs multiple passes over the data. First it

determines individual frequency count for each element in

collection L1 and counts the number of occurrences present in

each window. It starts for the 1-element long episodes and

continues to pass the data k times while always generating k-

event-long candidate episodes Ck based on frequent patterns

on the previous k-1 pass.

C. Generating and Pruning Candidate Episodes

In Fig. 4., the algorithm for creating the next iteration of

collection of (parallel) candidate episodes is presented. The

algorithm can be modified to produce serial or composite

candidates as well [10]. Episodes are stored in a sorted manner

that allows easier candidate generation. A group of episodes

following each other of size k-1 that share the first k-2 events

is called a block. In practice, the potential candidates are

generated by first creating all combinations of two episodes

inside of one block, and then pruning the non-frequent

candidates. In order to make a more efficient identification of

the blocks each first address of the episodes of a block is

stored in the Lk-1.block_start array.

Fig. 4. Algorithm for generating next candidate sequences [10]

D. Frequency Count of the Parallel Episodes

Counting the frequencies of the candidate episode is taking

advantage of the fact that content of consecutive windows

change only incrementally on each time step. The algorithm

starts just before the interaction sequence and also ends just

after the sequence, so that the user of the algorithm does not

need to have any special treatment at the beginning or at the

end of the sequence. Counting of sequential candidates works

in principle so that every sequence has their own event.count

attribute that increases every time an interaction point is added

to the sliding window. When the event.count is the same

length as the sequence itself it stores the starting time of a

window to the attribute s.inwindow. When the event.count

drops again, the frequency counter s.freq_count is increased

by the number of windows the whole sequence was present in

the window. In addition to normal storing of the candidates,

the algorithm also stores references to the instances in the lists

that are organized by interaction types and how many

instances there are of each type. This means that interaction

events added to the window will update the counter of all the

references of that particular event. The pseudo code for

counting frequencies is depicted in Fig. 5.

27

Fig. 5. Algorithm for detecting parallel events [10]

E. Frequency Count of the Serial Episodes

Frequencies of serial episodes are counted by using

automata that can exist in many instances at the same time. A

new instance of automaton is initialized every time a first

event of a sequence is arriving to the window. The automaton

is removed when this same instance is exiting the window.

The s.freq_count is increased again with the same principle of

storing the s.inwindow every time when the whole sequence is

completely in the window, and the automaton in its accepting

state without other automata present in the same state, this will

add to its frequency counter. The pseudo algorithm is

described in Fig. 6.

For creating composite candidates of mixed serial and

parallel events, a practical solution is to treat all the sequences

like in parallel, but to check the correct partial ordering only

when the whole sequence is present in the window.

V. RESULTS AND DISCUSSIONS

From our data we are able to see how much time is spent

among each devices, what kind of patterns there is and how

frequently they occur. In this phase the nature of the data

created was not that important since we just wanted test the

system and learn. Far more important are the implications of

how the system can be utilized when we are able to identify

certain type of episodes from the data.

Another angle of assessing our problem could be to

perceive it as a process discovery problem [11]. Similar

algorithms are developed in this area of data mining and could

be interesting to deploy them for our use as well.

Fig. 6. Algorithm for detecting serial events [10]

VI. CONCLUSIONS

As a result of mining the testing day we got expected

results. The mining works on the data like this and it is a good

starting point for deploying other data analyzing tools for the

future use of our system. With sequential pattern mining we

are able to recognize different patterns, which could be, for

example different actors using machines, actors spending time

in a specified area, forklift lifting traceable pallets, identifying

whether an actor is relatively attractive over certain threshold,

defining social groups of a manufacturing facilities,

optimizing production processes. Each round of prototyping

with the possible data brings more knowledge what kind of

data we want to produce and how we are going to apply it. We

propose that through prototyping and using data mining we

can create extra value as a low-cost step in the development

process of data warehouses and intelligent manufacturing

systems.

ACKNOWLEDGMENT

This research is supported by the Research Council of

Norway (RCN) through its user-driven research (BIA) funding

scheme, project number 236739/O30.

REFERENCES

[1] R. Kimball, and M. Ross. The data warehouse toolkit: The definitive
guide to dimensional modeling. John Wiley & Sons, 2013.

[2] A. Gerstenberg, H. Sjöman, T. Reime, P. Abrahamsson, and M.
Steinert. "A Simultaneous, Multidisciplinary Development and Design

28

Journey–Reflections on Prototyping." In Entertainment Computing-
ICEC 2015, pp. 409-416. Springer International Publishing, 2015.

[3] W. Gaver, J. Beaver, and S. Benford. "Ambiguity as a resource for
design." In Proceedings of the SIGCHI conference on Human factors in
computing systems, pp. 233-240. ACM, 2003.

[4] L. Leifer, M. Steinert. Dancing with ambiguity: Causality behavior,
design thinking, and triple-loop-learning. Information Knowledge
Systems Management, 10(1-4), 151-173. 2011.

[5] K. Wang, "Intelligent and integrated RFID (II-RFID) system for
improving traceability in manufacturing." Advances in Manufacturing
2, no. 2: 106-120. 2014.

[6] M. Steinert, and L. J. Leifer. "'Finding One's Way': Re-Discovering a
Hunter-Gatherer Model based on Wayfaring." International Journal of
Engineering Education 28, no. 2: 251. 2012.

[7] A. Gosain, and A. Amar. "Security Issues in Data Warehouse: A
Systematic Review." Procedia Computer Science 48: 149-157. 2015.

[8] H. Mannila, H. Toivonen, and A. I. Verkamo. "Discovery of frequent
episodes in event sequences." Data mining and knowledge discovery 1,
no. 3: 259-289.R. 1997.

[9] H. Sjöman, M. Steinert, G. Kress, and M. Vignoli. "Dynamically
capturing engineering team interactions with wearable technology." In
DS 80-11 Proceedings of the 20th International Conference on
Engineering Design (ICED 15) Vol 11: Human Behaviour in Design,
Design Education; Milan, Italy, 27-30.07. 15. 2015.

[10] J. Ahola. Mining sequential patterns. Vol. 10. VTT research report
TTE1-2001, 2001.

[11] W. van der Aalst, A. Kalenkova, V. Rubin, and E. Verbeek. "Process
discovery using localized events." In Application and Theory of Petri
Nets and Concurrency, pp. 287-308. Springer International Publishing,
2015.

29

