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Abstract—This paper presents how data mining can be 

applied to RFID proximity tracking data captured in a 

production setting. The WINEPI algorithm is explained and used 

for mining sequential patterns from transaction data produced 

by portable RF transceivers that can be attached, for example, to 

the personnel and machines of a production facility. The 

contribution of this paper is the additional mindset of how data 

can be produced for a data warehouse with dedicated sensors in 

order to prototype the data warehouse itself – and how we can 

use this created knowledge as a help when designing intelligent 

manufacturing systems. 
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I. INTRODUCTION 

The standard data warehouses are in a way statically 

related to the IT infrastructure as the data is often acquired 

through quite rigid operational processes [1]. Creating a new 

data warehouse is like developing a new product. It is context 

dependent and we cannot confirm what the final requirements 

of the system are and, according to Kimball & Ross, data 

warehouses should especially adapt to constant change. 

Furthermore, there is an irrational human as an end-user for 

the data warehouse business intelligence systems [1]. 

Reference [2] describes early stage product development as a 

multidisciplinary, iterative process that is ambiguous by nature 

[3][4]. There might be situations where one needs to create a 

new data warehouse quickly or to prototype data warehouses. 

Technically this might be challenging since data warehouses 

are traditionally based on data that is acquired from 

operational systems. For modern data warehouses in 

manufacturing and automation, there might be a need for a 

more dynamic approach of creating data sets. When we are 

designing systems where data warehouses are in the key roles, 

we would like to optimize the design thereof, but it is 

impossible since we do not have the data yet. For example, 

there are challenges and needs in the industry to deploy RFID 

systems, but it is not yet widely understood how the systems 

would work in all manufacturing contexts and what the 

benefits and costs, respectively, are [5]. We are proposing an 

approach in addition to traditional method of building data 

warehouses that is based on simulated or provided data. If we 

create our own data cube dynamically, we allow ourselves to 

explore different possibilities of creating the warehouse and 

learn while at the same time we can deploy a wide range of 

methods available in the data mining community.  In this 

paper we give one example of how this approach can be 

applied, by building our own sensor-arrays in order to 

relatively quickly create a data warehouse, as well as gather 

test data. We build our own dedicated sensors by using 

existing technology, we deploy them, we generate data, we 

learn from it, and then we can use existing standard data 

algorithms. In the bigger picture we are getting in a position 

where we could be more independent of simulations of the 

suppliers, or at worst avoid the situation of designing and 

building systems without any data. This problem is often 

encountered in product development: it is hard to design for an 

imaginary, complex system and for its possible benefits while 

the development is kept on an abstract level [2]. Challenges 

like this could be overcome by initially pre-defining the data 

warehouse more dynamically and loosely and through 

prototyping learn about the future data structures of the new 

data warehouse before taking the investment decision.  

 

We are on the way of developing a general comprehensive 

platform for gathering temporal relative proximity data. This 

platform is flexible and can be easily modified to 

accommodate new ideas and changes that appear in product 

development. In order to prove the usefulness of this system, 

we wanted to go through one full round of iteration in 

developing of a system from the beginning until the data is 

created and analyzed. We need tools to mine the produced 

data so that it can instantly show the value for its users. We 

define data mining as discovering interesting, and potentially 

useful patterns from data through applying algorithms in order 

to extract novel, previously hidden knowledge and relations 

[7]. The WINEPI algorithm is applied to the experimental 

dataset in order to test the possibilities of mining frequent 

sequential patterns [8]. Our main emphasis is on the approach 

of how data warehouses can be prototyped, tested, and how 

their requirements subsequently can be improved based on this 

early feedback for the overall system design, and therefore 

create extra value. 
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Following this introduction, the problem setting is 

introduced, the ways of solving it are discussed, and the data 

mining approach is described and applied. Finally, this paper 

concludes with results, discussions and future work. 

II. PROBLEM SETTING 

We have developed a portable system that consists of both 

active and passive RF transceivers. The active transceivers 

gather and store data, and the passive ones act as transponders 

respectively [9]. The devices are attached to different actors. 

For instance, members of a manufacturing team can carry the 

devices, or the devices can be fastened to objects, such as tools 

and materials. The dataset used here is from tracking a test 

group within an experiment. The raw data consists of 

proximity values and time stamps between different devices 

and is used as a proxy for human-human, human-machine and 

machine-machine interactions in order to model activities in 

sequences, for example, in workshop or factory settings. These 

sequences, to mention a few, might include frequent routes 

that are used in a factory, how often machines and resources 

are used, or in what spatial or temporal order interactions 

between these actors take place. 

 

One of the devices (in prototype stage) is depicted in Fig. 

1. It consists of basic electrical components and can be 

optimized greatly in respect to size and energy efficiency. The 

development thereof is not the focus, the devices rather show 

how to relatively fast and cheaply create a data warehouse, as 

well as actual data, and get feedback from it. The common 

next step is to apply data mining techniques to the data.  

In this paper we chose the following goal: We want to detect 

frequent patterns and subsequently gain insights based on the 

data, from two or more actors within one event, that consists 

of four different distance ranges (0-1,5m; 1,5-3m; 3-5m; 5-

11m) and a time stamp. 
 

Fig. 1. Parts of an active RF transceiver prototype [9]. 

Our test data is from an experiment where a group of 

people uses facilities and workshops together or as individuals 

throughout one day. There were eight different sensors 

deployed as either static or active actors. The experiment day 

mainly consists of small meetings, as well as working in the 

workshop. Each sensor produce data point bursts every four 

seconds (+random time of 0-1000ms) from where the distance 

is estimated. In our experiment with eight device setup, 

depending on the activity level of a tagged person or 

equipment, each device produce approximately 28000 data 

points per day Plotting the data helps humans to understand 

the data gathered, but data mining reveals the possible 

underlying hidden patterns for the interpreter. We need a tool 

for recognizing sequential events and one is tested in the 

following chapters. 

 

III. COMPUTATION INTELLIGENCE APPROACH  

Because we are dealing with real-time RF systems, there is 

always some noise in the process of gathering data. This 

means that before starting the mining part, we need to pre-

process the data and detect possible outliers. After this step, 

one can proceed to choose the algorithm. A graphical view of 

our raw data is given in Fig. 2. We wanted to deploy one of 

the original algorithms in sequential pattern mining to try out 

our approach. The WINEPI algorithm was originally 

developed for mining telecommunication network alarm logs 

in order to find sequential patterns from the data [8]. After a 

thorough research, this algorithm seemed to be a good 

alternative for mining interaction patterns from our data as 

well. Many of the algorithms created later are based on ideas 

of this sequential pattern-mining algorithm. With the WINEPI 

algorithm we can identify rules, compute their strengths and 

confidence intervals. It can detect both parallel and serial 

event episodes and can be applied with some modifications for 

multiple sequences [10].  

Fig. 2. Graphical view of our experimental data set of interaction data in a 

course of one day.  

 

IV. SOLUTION PROCEDURE 

In this section we define the formal concepts and notations 

that we will use to describe our mining methods. We also 

describe and explain the main points of the algorithm by using 

a descriptive pseudo algorithm. The solution is implemented 

in MATLAB R2014. Generally WINEPI algorithm moves a 

user-defined time window over the whole data set and count 

serial and parallel occurrences of actors present on a time 

stamp. After one pass over the data set it creates all the 

combinations of possible episodes for the next iteration, but 

prunes the candidates down based on the frequent patterns of 
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the preceding iteration. We follow the basic definitions 

introduced by Mannila, Toivonen and Verkamo in formally 

defining the original alarm sequences but modified to our 

context [3].  

A. Definitions 

1) A time point is an integer that represents the 

occurrence time of the interaction between two devices. 

2) Time interval is a continious sequence with a range of 

time points such that [ta, tb] ≡ {t: ta ≤ t ≤ tb}. The duration of 

the time interval can also be called as the width of the 

interval: w = |tb - ta|  

3) Given a class of actor types X, an interaction point is a 

pair of terms (a,t) where a∈X and t is the time point 

represented by a unix time stamp integer. An interaction 

sequence is an ordered set of interaction events defined as S = 

{(a1,t1),(a2, t2),...,(an,tn)}, such that ai∈X for all i=1,2,...,n, and 

ti≤ ti+1 for all i=1,...,n - 1. 

4)  Let C be a set of interaction episodes with respect to 

actor ak. Let s be a set of the distinct interaction events a1 

a2,...,an such that s⊆X. When the threshold of minimum 

support is defined, the episode s is frequent if frequency (s) ≥ 

user defined minimum support. 

B. Main Algorithm 

Episodes in the framework can be parallel, serial or 

combinations of these two. The first does not require a partial 

order in order to be recognized, but the second requires 

temporal order. Furthermore, each event must occur within a 

certain period of time. In practice, this is a user-defined time 

window that slides over the interaction sequence data and the 

algorithm is counting the occurrences of episodes within these 

windows. Frequency for each episode is calculated based on 

these counts of in how many windows the episode have been 

fully present out of the all windows over data. In other words, 

the algorithm finds all the sequential patterns that satisfy the 

predefined time constant, and whose frequency is exceeding a 

user set minimum frequency. The pseudo code for the main 

algorithm is presented in Fig. 3. 

 

Fig. 3. Main algorithm of WINEPI [7] 

The algorithm runs multiple passes over the data. First it 

determines individual frequency count for each element in 

collection L1 and counts the number of occurrences present in 

each window. It starts for the 1-element long episodes and 

continues to pass the data k times while always generating k-

event-long candidate episodes Ck based on frequent patterns 

on the previous k-1 pass. 

C. Generating and Pruning Candidate Episodes 

In Fig. 4., the algorithm for creating the next iteration of 

collection of (parallel) candidate episodes is presented. The 

algorithm can be modified to produce serial or composite 

candidates as well [10]. Episodes are stored in a sorted manner 

that allows easier candidate generation. A group of episodes 

following each other of size k-1 that share the first k-2 events 

is called a block. In practice, the potential candidates are 

generated by first creating all combinations of two episodes 

inside of one block, and then pruning the non-frequent 

candidates. In order to make a more efficient identification of 

the blocks each first address of the episodes of a block is 

stored in the Lk-1.block_start array. 

Fig. 4. Algorithm for generating next candidate sequences [10] 

D. Frequency Count of the Parallel Episodes 

Counting the frequencies of the candidate episode is taking 

advantage of the fact that content of consecutive windows 

change only incrementally on each time step. The algorithm 

starts just before the interaction sequence and also ends just 

after the sequence, so that the user of the algorithm does not 

need to have any special treatment at the beginning or at the 

end of the sequence. Counting of sequential candidates works 

in principle so that every sequence has their own event.count 

attribute that increases every time an interaction point is added 

to the sliding window. When the event.count is the same 

length as the sequence itself it stores the starting time of a 

window to the attribute s.inwindow. When the event.count 

drops again, the frequency counter s.freq_count is increased 

by the number of windows the whole sequence was present in 

the window. In addition to normal storing of the candidates, 

the algorithm also stores references to the instances in the lists 

that are organized by interaction types and how many 

instances there are of each type. This means that interaction 

events added to the window will update the counter of all the 

references of that particular event. The pseudo code for 

counting frequencies is depicted in Fig. 5. 
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Fig. 5. Algorithm for detecting parallel events [10] 

E. Frequency Count of the Serial Episodes 

Frequencies of serial episodes are counted by using 

automata that can exist in many instances at the same time.  A 

new instance of automaton is initialized every time a first 

event of a sequence is arriving to the window. The automaton 

is removed when this same instance is exiting the window. 

The s.freq_count is increased again with the same principle of 

storing the s.inwindow every time when the whole sequence is 

completely in the window, and the automaton in its accepting 

state without other automata present in the same state, this will 

add to its frequency counter. The pseudo algorithm is 

described in Fig. 6. 

For creating composite candidates of mixed serial and 

parallel events, a practical solution is to treat all the sequences 

like in parallel, but to check the correct partial ordering only 

when the whole sequence is present in the window. 

 

V. RESULTS AND DISCUSSIONS 

From our data we are able to see how much time is spent 

among each devices, what kind of patterns there is and how 

frequently they occur. In this phase the nature of the data 

created was not that important since we just wanted test the 

system and learn. Far more important are the implications of 

how the system can be utilized when we are able to identify 

certain type of episodes from the data. 

 

Another angle of assessing our problem could be to 

perceive it as a process discovery problem [11]. Similar 

algorithms are developed in this area of data mining and could 

be interesting to deploy them for our use as well. 

 

 

 
Fig. 6. Algorithm for detecting serial events [10] 

VI. CONCLUSIONS 

As a result of mining the testing day we got expected 

results. The mining works on the data like this and it is a good 

starting point for deploying other data analyzing tools for the 

future use of our system. With sequential pattern mining we 

are able to recognize different patterns, which could be, for 

example different actors using machines, actors spending time 

in a specified area, forklift lifting traceable pallets, identifying 

whether an actor is relatively attractive over certain threshold, 

defining social groups of a manufacturing facilities, 

optimizing production processes. Each round of prototyping 

with the possible data brings more knowledge what kind of 

data we want to produce and how we are going to apply it. We 

propose that through prototyping and using data mining we 

can create extra value as a low-cost step in the development 

process of data warehouses and intelligent manufacturing 

systems. 
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