International Workshop of Advanced Manufacturing and Automation IWAMA 2016)

Beyond Agile Methodologies: a Conceptual Analysis
for Software Process Pipeline in the Industry 4.0

Lapo Chirici
Dept. of Digital Technologies
Istituto Europeo di Design (IED)
Florence, Italy
lapochirici@ied.edu

Abstract— Accelerating software development schedules is a
paramount activity in the continuously evolving digital scenario
of industry 4.0. Software companies are competing to bring more
efficient processes to improve quality and preductivity in the
pipeline. In order to accomplish this, the entire segment have
been considering the advantages released by the adoption of agile
methodologies, although not without several adjustments. In
facts, in the last five years, a significant shift that brought both
managers and technicians to move from traditional Waterfall
model to iterative agile/scrum methods, has been registered. In
this context, mapping the value stream results crucial, since it
contributes to identify, eliminate and reduce all these non-value-
add activities during the cycle.

Keywords — agile; lean methodology; scrum; seftware pipeline

I. INTRODUCTION

In today's global economy, software industry is one of the
most strategic actor, since it creates new opportunities for
business change by providing cutting-edge solutions. The
resulting transformation in the environment places large
demands on software development capabilities, productivity
and quality. With the Industry 4.0, all data about operations
processes, process efficiency and quality management, as well
as operations planning are available in real-time. In this
evolving environment, technological advances, increased
globalization and other competitive needs are influencing the
way the software companies manage their development
projects. The traditional waterfall model is the dominant
project management paradigm. Agile methodology is direct
response to waterfall model, and lean is recent one. But
effectively, when software companies attempt to adopt
agile/scrum methods, often the developers team is unwilling to
alter their routine in terms of way of thinking. This mismatch
between processes within the pipeline makes the team very
difficult to accept the introduced approach and at the end
regress to their former process, not without consequences. On
the other hand, Kanban system offers an opportunity to build
on what is already working and gradually makes the
transformation. And the Value Stream Mapping (VSM) helps
to bring in significant improvement by identifying and
eliminating those non-value-added activities during software
development.

© 2016. The authors - Published by Atlantis Press

63

Kesheng Wang

Dept. of Production and Quality Engineering
Norwegian University of Science and Technology
Trondheim, Norway
kesheng.wang@ntnu.no

Il. LEAN ANTHOLOGY

Initially, Lean movement was born in Japan in the mid 1950-s
in manufacturing industry (automotive industry) and was
mainly aimed at loss reduction and sustainable production. In
2000s, Lean was also adapted for software development by
Mary and Tom Poppendiecks who related it with 7 initial Lean
principles and Agile philosophy.
Following the trend that Lean could be extended to any
industry, Lean was applied in the startup industry in 2008 by
Eric Reis as a way of developing “new products and services
in circumstances of extreme uncertainty.” A typical lean
company follows a learn — measure — build cycle, and
conducts many tests, frequently connects with customers,
understands their value and focuses its key processes to
continuously improve it. A never ending cycle leads the
startup to sustainability, smart development and success.
Lean software development method is based on the principle
"Just in time production”. It aims at increasing speed of
software development and decreasing cost. Lean development
can be summarized in seven steps:

e Eliminating Waste
Amplifying learning
Defer commitment (deciding as late as possible)
Early delivery
Empowering the team
Building Integrity
Optimize the whole

A. Differences between Manufacturing

As conceivable, software development is not
manufacturing. In manufacturing the goal is the production of
physical parts and products. Time frames are short, the work is
linear, tangible and repeatable, and the scope is more
constrained with limited communications channels. This is not
the primary paradigm of software development. Treating
software development as Lean Manufacturing leads down a
path of optimizing the mechanics of developing software,
which can yield limited benefits but fails to address the much
larger software product development issues. Moreover, the
software development process has more uncertainties and
complexities as compared to manufacturing. The result
consists about the creation of an intellectual property, which is

highly dependent on software professionals’ innovative
thinking, creativity and efficiency [1]. Moreover, the software
development environment is geographically distributed, that
means multi-location teams with different time zones. The
single operator has to respond quickly to rapidly changing
customer requirements (between 30 and 50 percent of all
features are not necessary and add overhead). The team
members are assigned to multiple projects and often
overloaded [2]. In this scenario, not-disruptive and mixed
approaches offer an opportunity to start out with incremental
and evolutionary transformations by uncovering the non-
value-added activities and recognizing the bottlenecks [3].

B. From sequential Waterfall to iterative methods

Currently, two models are dominating the software
development activities: waterfall model and agile/scrum
model. Waterfall model is sequential development model; it is
the predominant in the software development community.
Agile/Scrum model is iterative development model, and -
according to a survey released by Forrester — in 2010 only
about 35% of software majors use frequently agile and lean
principles [4].

DISCOVER

Fig. 1. The Waterfall Software Development Model

Here, the development starts from defining and analyzing the
requirements and ends to operating (or maintaining) the
software. Actual coding is only a minor part of the entire
process, whereas there is much emphasis on defining,
designing, documentation, testing and operating (maintaining)
the software system. The major problem with the waterfall
model is its inflexibility, since it is inefficient in responding to
changing customer requirements. In Waterfall model, testing
normally takes place only after coding has been completed.
Nowadays it’s hard to apply because, since the customer
requirements and priorities are rapidly changing.

C. Towards Lean: the “V-Model”

An alternative way to address some of the issues, is
represented by the V- Model, an extension of Waterflow that
is based on association of a testing phase for each
corresponding development stage.

64

Acceptance &

| Requirements |« > |
‘ [| System Testing j
L | High Level B }{ Integration J
Design \ Testing
Low Level Unit
| > J
[Design Testing ‘

N

Implementation

Fig. 2. The V — Model

For every single phase in the development cycle a directly
associated testing phase is provided. On the left side,
development activities including requirement analysis, feature
specifications, high-level design, and low-level design proceed
from top to bottom. On the right side, testing activities,
including, unit testing, integration testing, system testing, and
acceptance testing are completed in a bottom-up fashion. In
this model, test plans are developed along with each
development activities, and the tests will executed in reverse
order after coding is completed. Coding phase joins the two
sides of the V — Model [5].

I1l. AGILE: AN ITERATIVE APPROACH

Agile method is basically an iterative approach to software
development. It represents a major departure from traditional
waterfall model and it's based on short iterations and quick
releases. It relies on Agile manifesto, written by experienced
practitioners (in 2001), that agreed upon four core values
become the cornerstones of this ideology [6]:

e Individuals and interactions over processes and tools;

e Working software over comprehensive
documentation;

e Customer collaboration over contract negotiation;

e Responding to change over following a plan;

A. The Agile’s ancestors

Lean manufacturing, initially called Just-In-Time
production (JIT) was originally developed by Toyota in the
latter part of the 20th century. Lean manufacturing system is
built on several principles and philosophies. These include
minimization of waste (through pull-production), Kaizen
(continuous improvement), getting quality right from the
beginning (stop production for fixing), among others [7]. The
Lean principles have been applied to Agile software
development, and quite often are referred as Agile/Lean. Agile
and Lean are relatively broad concepts, since there are several
more detailed software development models, the developers of
which call them as Agile methods. These models include
Scrum, Extreme Programming (XP) and Agile Unified
Process (AUP), among others.

B. SCRUM

Ken Schwaber and Jeff Sutherland developed scrum method
in 1990s. Scrum is unique because it uses the real-time
progress of a project, where feedback loops constitute the core
element, to plan and deliver the application. In Scrum, smaller
batch sizes and short delivery cycles called “sprints” are used.
These sprints are typically one to four weeks in duration. The
team members coordinate their work in daily stand-up
meetings, which normally lasts for about 15 minutes. At the
end of each sprint, product owner and team members meet to
assess the progress of a project and plan its next sprint release.
This allows the project manager to adjust and revise the
project plan based on completed work, not predictions. This
results in enormous improvements in quality work, delivery
time, and customer satisfaction.

)) @ 30 days
Product Backlog Working increment

Sprint Backlog of the software

Sprint

Fig. 3. The SCRUM cycle

Scrum is defined by Stober [8] as a drastic simplification of
project management containing three roles, three documents
and three meetings. As can be seen from Figure 4, in a Scrum
software development project, Product Owner (PO) decides
the product backlog, i.e. the features expected from the
software (for the next release), signs off all deliverables and
represents budget and interests of the stakehlders. At the start
of each sprint, the project team decides in a sprint planning
meeting, which items from the product backlog are taken to
the sprint backlog as use cases for the software.

ScrumMaster - ﬁ"‘

Input from End-Users,

Customers, Team and Svosucy puY Seaum
Backlog Meeting and
Othel Sllnkihotdtu Refinement Artifacts Update
Product Owner Team """'
8 , Review
\ TeamSelects \
\ HowMuchTo \ b
) CommitTo Do / 7‘7
/ By Sprint’s End / Potentially
L —/ — No Changes Shippable Product
Sprint Planning Sprint in Duration or Goal Increment
Meeting Backlog
(Parts 1 and 2) ' ' ’ '
Product ' i “
Backlog Retrospective

Fig. 4. SCRUM overview

This is based on the prioritization by the Product Owner and
teams work estimates and commitments. During each sprint,

65

which duration is typically two weeks, the team completes the
sprint backlog. A daily short Scrum meeting is held to follow-
up the ongoing work and solve rising issues. Scrum Master
(ScM) facilitates issue solving outside the meetings. At the
end of each sprint a sprint review meeting is held to review the
sprint results. Each sprint results in a working increment of the
software product, and the cycle keeps until the product
backlog is depleted and the software release is ready. Releases
again are repeated for major software updates. Process flow of
scrum testing is as follows:

e Each iteration of a scrum is known as Sprint

e Product backlog is a list where all details are entered
to get end product

e During each Sprint, top items of Product backlog are
selected and turned into Sprint backlog

e Team works on the defined sprint backlog

e Team checks for the daily work

e At the end of the sprint, team delivers product
functionality

C. Developing Agile Approach

In a nutshell, Agile is a time-focused, iterative philosophy that
allows to build a product step-by-step (incrementally),
delivering it by smaller picces. One of its main benefits is the
ability to adapt and change at any step (depending on
feedback, market conditions, corporate obstacles, etc.) and to
supply only relevant products to the market. That is why an
agile company is usually very flexible, quickly adapts to
changes, iterates less while implementing faster, and is able to
Seize new opportunities as they appear. It enables a fast
decision-making process through flexible organizational
structure and simple communication. With the implementation
of Agile approach, the orientation of the company has to
reflect the expectations of their customers and the ways in
which their customers work [9]. A research among 601
development released by TechBeacon [10] and IT
professionals conducted in 2015, shows that nowadays Agile
is the primary management approach. And they mostly use it
to enhance collaboration and increase the level of software
quality. Agile methodologies provide in facts a remarkable
schedule acceleration, but sometimes it can be difficult for
planners to determine the effects of these factors on the
duration. This aspect can consequently entail a higher
complexity in the determination of suitable choices to
optimize the project performance. First and foremost, the
Agile values, principles and practices should help to guide
organization architecture modeling and documentation efforts.
In order to be successful at organization architecture, rethink
the overall approach and address some fundamental issues is a
fundamental step. Some of these issues are:

e Focus on people, not technology:

Fred Brooks (1995) wrote that “The quality of the
people on a project, and their organization and
management, are much more important factors in
success than are the tools they use or the technical
approaches they take. All of the arguments over “which

model is right”, “which notation is right”, and “which

paradigm is right” are meaningless if you don’t have a
viable strategy for working together effectively.

o Keep it simple:

A critical concept is that your enterprise architecture
models and documents just need to be good enough,
they don’t need to be perfect. A hand-drawn sketch
today on a plain old whiteboard (POW) can often be
far more valuable than a fully documented and
validated document several months from now.

e Work iteratively and incrementally:

Agile enterprise architects work in an iterative and
incremental manner. Agile modelers will follow the
practice Apply the Right Artifact(s) and use a wide
variety of modeling techniques as required. They will
also follow the practice Iterate To Another Artifact
when they realize that the model that they are working
on either isn’t the appropriate one with which to depict
a concept or because they are simply stuck and need to
break out of their “analysis paralysis”. Agile modelers
also follow the practice model in small increments,
modeling just enough to fulfill the purpose at hand and
then moving on to the next task. It's not required to
create complete models, instead it's more clever to
enable models that are just good enough. The
advantage of this approach is that they evolve their
models incrementally over time, effectively taking a
just-in-time (JIT) model storming approach that
enables them to get the models in the hands of their
customers as quickly as possible.

D. Implementing the Agile team

Agile teams at scale are organized into smaller sub-teams.
There are four basic methods to organise them:

e Architecture-driven approach: this strategy fits well
with high-quality architecture. Here, the sub-teams are
assigned around the subsystems/components within the
software architecture.

e Feature-driven approach: each sub-team implements a
feature at a time as a meaningful chunk of functionality
for the stakeholders. This strategy should be applied in
situation where the architecture presents a lot of
coupling and where there are sophisticated
development practices to be fulfilled. The challenge
with this approach is that the sub-teams often need to
access a wide range of the source code to implement
the feature and thereby run the risk of collisions with
other sub-teams.

e Open source approach: one or more
subsystems/components are developed in an open
source manner, even if it is for a single organization.
This strategy is typically used for
subsystems/components which are extensively reused
by many teams (e.g. a security framework), and which
must evolve quickly to meet the changing needs of the
other systems accessing/using them.

66

IV. INTRODUCING KANBAN AND VALUE STREAM MAPPING

A. Kanban in software industry

Kanban is a scheduling system of visual management aimed at
just-in-time delivery excluding team overloading. As a part of
Lean, initially the methodology supported japanese
automotive industry. Similarly, to Scrum, Kanban tracks ‘to
do — in progress — done’ activities, but it limits them by the
number of ‘work in progress’ activities (the number is defined
by the team manager and cannot be exceeded). This
framework or method is quite adopted in software testing
method especially in agile testing.
There are four fundamental Kanban principles:
e Visualize work to increase communication and
collaboration.
e Limit work in progress to avoid an endless chain of
non-prioritized open tasks.
e Measure and optimize the flow, collect metrics,
predict future problems.
e Aim for continuous improvement as the result of
analysis.

B. Scrum vs Kanban

Scrum and Kanban methodologies follow the principles of
Agile and Lean. They track processes via scheduling system to
ensure transparency and devoted teams manage them. Both
methodologies limit the amount of work in progress (Scrum
limits them by time units — iterations, Kanban limits work in
progress per workflow state). Also Scrum and Kanban focus
teams on breaking the work into pieces and supplying the
releasable parts of the product earlier and more often.

Despite these similarities, Scrum and Kanban are not the
same, and the image below illustrates some of the differences
[11].

TABLE |. DIFFERENCE BETWEEN SCRUM AND KANBAN

SCRUM KANBAN

Test must be broken down to be
completed within one sprint

No particular item size is
prescribed

Prescribes a prioritized product

backlog Prioritization is optional

Scrum team commits to a particular

amount of work for the iteration Commitment is optional

No particular item size is

Burndown chart is prescribed prescribed

A Kanban board is persistent. It

Between each sprint, a scrum board
is reset

limits the number of items in
workflow state

It cannot add items to ongoing
iteration

It can add items whenever capacity
is available

WIP limited indirectly

WIP limited directly

Timeboxed iterations prescribed

Timeboxed iterations optional

C. Mapping the Value Stream

In order to "grease" more the tasks pipeline, one of the
noteworthy tools is represented in the adoption of Value
Stream Mapping (VSM). The activity arising from VSM
enables extraordinarily effective way to analyze, capture and
communicate the flow of the processes. Manufacturing VSMs
are designed to capture the shorter, more serial workflows and
limited scope of assembly lines. Value Stream Mapping
(VSM) for software development is the set of all the activities
required to develop a software application and includes how it
is conceived, developed, and released. It includes both value-
added and non value-added activities [12].

Coding & | Integration |
| UnitTesting | Testing

! Requirement Design

Analysis

Build
Release |

Work Time | i ! ' : ' ¢

Value-Add activities: Series of short bursts followed by delays

Work Time [I I r I I

Huge opportunities for process improvement

System
Testing

Work Time J_”_”_”_”_l
‘Wait Time,

Fig. 5. Value Stream Mapping in software developemnt flows

The steps to create a Value Stream map are described here:

a. ldentify the actions that take place;

b. Specify how much of the time these actions were
being worked on actual work was taking place and
how much time was spent on wasting;

c. Look, and denote any loop backs present in the
workflow;

d. Total up the average time working on the project;

e. Analyze the entire value stream against value-added
and non-value-added activities;

f. Develop and initial value stream map for pull system
(or Kanban).

V. CONCLUSION

This conceptual analysis aims to put in evidence how the
different methodologies derived by Logistics and Quality
Management can be widely applied in the IT ecosystem. If
they are combined together, they can offer alternative and
clearest stages to deploy optimized performance at the end of

67

the process flow. By using this approach in software design
we are able to first recognize and then eliminate activities
which don’t add value e.g. partially done work without any
guarantee if customer will take it in use, unnecessary task
swapping, waiting, handoffs, faults, etc. This way of working
also implies improved responsiveness through rapid deliveries
allowing customers to delay decisions. This is especially
enabled by short feedback loops and continuous integration.
This “reshuffled methodology” also has the advantage of
building confidence in governance groups who have not been
exposed to agile before. Another stakeholder management
technique most project managers used was to share the scrum
or Kanban boards showing key metrics on a regular basis, and
concentrate on making the tracking and communications
highly transparent.

VI. REFERENCES

[1] J. Widman, S Y. Hua, and S.C. Ross, ”Applying lean principles in
software development process — a case study,” Issues in Information

Systems, pp. 635-639, 2010.
D. Joyce, “Kanban for software engineering,” A BBC Program, 2009.

D. J. Anderson, and Arne Roock, “The Journal of Information
Technology Management,” Cutter IT Journal, pp. 6-11, 2011.

C. Ebert, P. Abrahamsson, and N. Oza, “Lean software development,”
IEEE Software, pp. 22-25, 2012.

X. Zhang, T. Hu, H. Dai, and X. Li, “Software Development
Methodologies, Trends, and Implications,” Proceedings of the Southern
Association for Information Systems Conference, Atlanta, GA, USA, pp.
173-178, 2010.

K. Beck, “Manifesto for Agile Software Development”,
http://Agilemanifesto.org

D. Duka, "Adoption of Agile Methodology in Software Development",
Information & Communication Technology Electronics &
Microelectronics (MIPRO), Split, Croatia, 2013

T. Stober, U. Hansmann. "Overview of Agile Software Development",
Agile Software Development: Best Practices for Large Software
Development Projects, Springer. 2010.

A.B.M. Moniruzzaman, and S.A. Hossain, "Comparative Study on Agile
software development methodologies”, Global Journal of Computer
Science and Technology, pp 11-25, July 2013

Survey: “Is The Agile The New Norm?”,
http://techbeacon.com/survey-agile-new-norm

N. Sirina, “How to choose between Agile and Lean, Scrum and Kanban
which methodology is the best?”, August 2016
https://realtimeboard.com/blog/choose-between-agile-lean-scrum-
kanban/

H. K. Raju, and Y. T. Krishnegowda, "Value Stream Mapping and Pull
System for Improving Productivity and Quality in Software
Development Projects”, Int. J. of Recent Trends in Engineering &
Technology, Vol. 11, June 2014

[2]
(31

(4]

(5]

[6] 2001

[71
(8]
(9]
2015

[10] May

[11]

[12]

http://agilemanifesto.org/
http://techbeacon.com/survey-agile-new-norm
https://realtimeboard.com/blog/choose-between-agile-lean-scrum-kanban/
https://realtimeboard.com/blog/choose-between-agile-lean-scrum-kanban/

