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Abstract—Distributed cloud platforms facilitate service 
providers to deliver geographically dispersed online services to a 
large number of users all over the world, while the aggregated 
user requests introduce stochastic demands for various resources 
in different cloud data centers. Resource scheduling in cloud 
platform is of high complexity due to various nonlinear cost 
models and multidimensional demand stochasticity. Existed 
scheduling algorithms generally utilize linear cost model, thus is 
hard to utilize budget efficiently. We proposed an efficient 
Heterogeneous Cost models oriented cloud Resource Scheduling 
(HCRS) to address the problem. Experiments results show that 
HCRS increase revenue by up to 40% than that in previous mean 
demand based algorithm and is of low enough complexity. 
Therefore, HCRS can be used as a candidate for scheduling in 
cloud platforms with heterogeneous cost models.  

Keywords—heterogeneous cost models; demand stochasticity; 
cloud computing; resource scheduling 

I.  INTRODUCTION  

Globalized online services (such as Netflix [1], Facebook 
[2] and YouTube [3]) often face vast amounts of user requests 
from different locations across the world. Cloud computing 
technology is utilized to server user requests and reduces cost. 
Provided with nearly unlimited resources in cloud, under given 
resource budget, one common task of service provider is 
scheduling resources across geographically dispersed cloud 
data centers, to serve as many requests as possible  while 
satisfy given Quality of Service (QoS) requirements. Usually, a 
nearer data center is expected to provide higher QoS. Although 
cloud computing platform can provide resources on demand, 
the delay between request and response varies for different 
resource kind, e.g., it takes nearly tens of minutes to setup and 
start a new Virtual Machine (VM) to fulfill new computing 
resource demand. As a result, the provided computing 
resources cannot precisely match immediate resource demand. 
The situation of resource insufficiency and overload become 
worse when handling high dynamic resource demands with 
time. How to alleviate above situation when pre-allocating 
resources is an impending need to meet in cloud platform. 
Moreover, since relative high response time is often a must 
under time-tense online scheduling, it is essential to compute 
placement efficiently. 

When handling high dynamic resource demands, stochastic 
demand model is proved to be more effective than mean 
demand model, where demand is represented as a distribution 
in the former model and mean value in the latter model. 
Intuitively, stochastic demand model is effective since it can 
utilize more detail information of user demand than mean 
demand model. However, stochastic demands will significantly 
increase computation complexity. It is challenging to 
efficiently solve a resource allocation problem that combines 
combinatorial aspects and arbitrary stochastic demand 
distribution. Some preliminary research work have been carried 
out in stochastic demand based scheduling [4], [5], [6]. But 
existed work only investigate problems under amount 
constraint, e.g., maximize revenue for given amount of 
resources. Cost budget is more suitable for cloud resource 
scheduling since in typical cloud platform, resources usually 
incur rent cost. But the cost varies with instance type and data 
center location, and may change per several minutes according 
to the nonlinear charging functions. Cost budget is more 
general for scheduling when service providers rent resource in 
realistic cloud platforms. But charging functions in each data 
center of each cloud provider like [7] and [8] maybe different, 
the nonlinear stochastic demand combining with nonlinear 
charging functions make scheduling problem highly 
sophisticated. 

To solve scheduling problem effectively and efficiently un- 
der this problem schema, one need to utilize the inner structure 
of the problem. We develop an efficient placement algorithm 
accordingly, suitable for time-tense scheduling in large-scale 
systems. We proved that the lower bound of target problem can 
be calculated using solution to original problem with amount 
constraint, which can be solved efficiently. We then develop an 
Heterogeneous Cost models oriented cloud Resource 
Scheduling algorithm (called HCRS), which starts from 
solution giving lower bound and gets improved solution 
quickly by leveraging discrete functions to approximate 
continuous ones. Under the scenarios with general settings, we 
compared the effect of HCRS with commonly used mean 
demand based algorithm. Our analysis and preliminary 
experiments indicate that HCRS outperforms mean demand 
based algorithm under all scenarios and can increase revenue 
by up to 42%. Therefore, it can be used as an effective 
supplement to existing algorithm under cost constraint 
scheduling scenarios. 
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II. RELATED WORK 

The first part of related research effort being made is of 
handling resource scheduling for multiple cloud based services 
[9], [10], [11], [12], [13], [14]. [9] forecasted the mean value of 
total streaming demands in given time span t, then provided 
optimal solutions to schedule cloud servers with diverse 
charging functions and capacities. Their solution also 
considered in location heterogeneity to mitigate the impact of 
user globalization. [10] utilized the queuing theory to 
investigate the cloud resource allocation problem. A queuing 
model is introduced to characterize the service process in 
multimedia cloud. The mean value of average request arrival 
rate is forecasted to help model user requests as a Poisson 
process. [11] aimed to schedule cloud resources to meet 
Service Level Agreement (SLA) for Video on Demand (VoD) 
applications at a modest cost, they use mean value to represent 
the bandwidth of users and user groups, then presented a 
distributed heuristic algorithm to get a budget solution that get 
scheduling plan at modest cost. [13] connected problem of 
bandwidth allocation with differential pricing, then proposed a 
two-phase flexible bandwidth allocator (A-FBA), which admits 
and allocates minimal bandwidth to dynamically serve arriving 
user requests in one phrase, and allocates additional bandwidth 
for accepted requests maximizing revenue in another phase. 

There were also substantial research efforts being made 
about similar problems of resource consolidation [15], [16]. 
Based on a Markov chain model, [15] tried to detect host 
overload through maximizing the average intermigration time 
under given QoS goal, then adapted the algorithm to handle 
unknown non-stationary workloads using the multi-size sliding 
window workload estimation. [16] treated virtual machine as 
moldable unit which can change capacity when consolidation, 
then developed a Genetic Algorithm (GA) to consolidate mold- 
able VMs. Different from mean demands related work above, 
stochastic demand is considered to get optimal solution [17], 
[18]. [17] forecasted the distribution of demand and exploited 
the correlation between these demands. They used statistical 
multiplexing to reduce the probability of resource under- 
provision. [18] used user distribution to profile applications on 
given server. The target is to determine the degree of 
overbooking to guarantee requested performance while try to 
hold as many applications as possible. 

The part of highly relevant work is that of stochastic 
demand based resource scheduling for geographically 
dispersed services [4], [5], [19], [20]. [4] tried to solve the 
resource placement problem in a geographically  dispersed 
system which must satisfy varying demands for various kinds 
of resources. The algorithm aimed at placing resources in the 
regions as to maximize satisfied demand under resource 
constraints of dedicated data center in each region. In 
optimization target the local and remote requests are given 
different weight, thus can help consider in QoS and the revenue 
of resource sharing among data centers. [5] mitigated the 
problem in [4] to cloud platform where no resource constraints 
existed in each data center. The resource cost in considered in 
scheduling and the target is to allocate resource until the 
revenue by satisfying user demand is lower than resource cost. 
[19] proposed a scheduling algorithm for live media streaming 
system in cloud. They also considered stochastic demand and 

convert the resource scheduling problem to a min-cost flow 
problem, and then used a variant of successive shortest path to 
solve it quickly. [20] considered the problem of distributing 
resources to cloud data centers, to satisfy multidimensional and 
stochastic demands. The resource constraint is represented as a 
global resource amount budget. They convert the original 
problem into two nested optimization sub-problems, then 
derived an efficient fast resource placement algorithm. Existed 
work discussed the stochastic demand oriented resource 
scheduling problem in detail, and QoS and resource sharing are 
also involved to get an optimal result, while more realistic 
factors are not considered due to complexity is already very 
high when dealing with stochastic demand. However, to fit the 
algorithm to realistic scenario in cloud, the cost related effect 
should also be considered in when dealing with resource 
scheduling, which will be investigated in the paper. 

III. PROBLEM FORMULATION  

We consider a general system consisting of J  regions 
indexed by (1 )j j J  . In each region, the service provider 
can place resources to satisfy local and remote requests. To 
fulfill the needs of realistic systems, we assume two different 
time scales d sT T , where dT  ( the measurement duration) 
stands for the duration time of measurement for stochastic 
demand in each region (e.g., ten minutes for stochastic demand 
measurement in media streaming system [17]), and sT  (the 
scheduling duration) represents the duration time of one 
charging period and is on the order of hours (e.g., the charging 
period of Amazon EC2 is one hour [7]). Since one sT  can 

cover several dT , we set s dT IT . 

In one scheduling plan, we denote jL  as the amount of 

resource placed in region j , the set of resources placed in all 
regions is called a placement and the resource amount is 

denoted by { }jP L . And 
1

J

j
j

L L


  as the total amount of 

resource. To be consistent to the model of cloud computing, we 
set no limit on the amount of resources in each region. Given a 
placement, for a request from region j , if it is accepted, then 
the request is labeled as ‘satisfied’. If a request from region j  
is satisfied, it is assigned to either of: 1) resources located in 
region j  (satisfied locally), or 2) resource located in a different 
region (satisfied remotely). In each region, resources incur cost 
and the pricing model of each region is different. Denote the 

pricing model of each region as ( )c
jf  , and the only assumption 

is that ( )c
jf   is a monotonically increasing function. The 

problem can be stated as how to maximize revenue under given 
budget. To get the closed form of the problem, we first 
introduce the revenue model. 

Revenue Model. Given a placement P , in one realization 
of stochastic demand, let ( )locS P  and ( )remS P  denote the 
number of requests satisfied locally and remotely, then the 
weighted summation of satisfied demand is: 
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 ( ) ( ) ( )loc rem
loc remR P w S P w S P   

Denote ( )satS P  as the total number of satisfied requests, 

there is ( ) ( ) ( )sat loc remS P S P S P  , then (1) can be rewritten 
as:  

 ( ) ( ) ( )loc sat
loc satR P w S P w S P   

where locw , satw  and remw  are weights. For stochastic demand, 

let i
jD  be a random variable denoting the stochastic demand in 

the i -th measurement duration in region j , and iD  be a 
random variable denoting the demand in the i -th measurement 
duration in all regions. Their CDFs (Cumulative Distribution 

Function) are denoted as i
jcdf  and icdf , respectively. Given 

demand realization i
jd  and id , in the i -th measurement 

duration , the satisfied demand in region j  is ( , )i
j jmin d L  the 

satisfied demand in all regions is ( , )imin d L . By concretize (2), 
for one realization of stochastic demand, the total weighted 
revenue in all measurement duration under placement P  can 
be written as:   

    
1 1 1

( ) , ,
I I J

i i
sat loc j j

i i j

R P w min L d w min L d
  

    

Then for stochastic demand, the revenue can be written as 
the expected value of all possible revenue:   

      
1 1 1

( ( )) , ,
I I J

i i

sat loc j j

i i j

E R P w E min L d w E min L d
  

        

Then given a global budget C , the objective of algorithm is 
to find the optimal placement P  that maximizes the expected 
revenue:     

  
1

max ( ( )) . . ( )
J

c
j j

j

E R P s t f L C


  

IV. ALGORITHM  

Due to the existence of non-linear target and constraint 
functions, the problem described in (5) is a high complicated 
non-linear optimization one. And the value of J  can range 
from 10 (number of data centers in cloud platform) to more 
than 100 (number of nodes in content delivery network), with 
each j  contain numbers of measurement duration and 

different charging function ( )c
jf  . Furthermore, distributions 

can be correlated, which make the problem more complex. We 

need to find properties of solutions to devise efficient 
algorithms. First we introduce following lemma to get 
transformed problems: 

Lemma 4.1 For any continuous non-negative random 
variable X  with CDF ( )Xcdf   and constant C , it has: 

0
(min( , )) (1 ( ))

C

XE C X cdf v dv  . 

Proof of Lemma 4.1: Note that for given constant C, it has:  


( )

(min( , ) )
1

 
Pr X v v C

Pr C X v
v C

 
 






  

Denote random variable min( , )Y C X , and X  and Y  's 

cumulative distribution function (CDF) as ( )Xcdf   and ( )Ycdf  , 
then (6) can be rewritten as:   


( )

( )  
1

X
Y

cdf v v C
cdf v

v C









  

According to [21], for every real-valued non-negative 
random variable Z  with probability density function ( )Zcdf  , it 

has
0

( ) (1 ( ))ZE Z cdf v dv


  . Substituting Z  by Y , we can 

get
0 0

(min( , )) ( ) (1 ( )) (1 ( ))
C

Y XE C X E Y cdf v dv cdf v dv


      . 

Then the lemma is proved. 

Based on lemma 4.1, the revenue in (4) can be rewritten as: 


0

1

0
1 1

( ( )) (1 ( )) )

(1 ( ))
j

I L i
sat

i

I J L i
loc j

i j

E R P w cdf n dn

w cdf n dn



 

  






  

A. Subproblem 1 

Although the original problem stated in (5) (denoted as 0SP ) 
has no global optimal condition, when we investigated a 
similar and simper problem (denoted as 1SP ):  

  
1

max ( ( )) . .
J

j
j

E R P s t L U


   

We found problem 1SP  has a optimal condition which can 

be solved efficiently, and the solution of problem 1SP  provides 
a lower bound for maximal revenue in solution to the original 
problem 0SP , as stated in lemma 4.2: 
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Input: demand distribution 1( ) ( )U
jcdf   . 

Output: amount of resources placed in each region jL , 

lower bound of total resource amount CU . 

/ 2scope I . 

0v  . 

while (true)  

{ 

    v v scope  . 

    for ( o 1 tj J ) 

    { 

        1( ) ( )U
j jL cdf v . 

    } 

    / 2scope scope . 

    
1

( )
J

c
j j

j

c f L


  . 

    if ( c  is close enough to C ) 

    { 

        
1

J
C

j
j

U L


 . 

        return CU  and all jL . 

    } 

    else if( c C ) { 

        v v scope  . 

    } 

    else { 

        v v scope  . 

    } 

} 

Lemma 4.2 Denote one optimal solution to 1SP  as 

{ }U U
jP L  with maximal revenue ( ( ))UE R P . If 

1

( )
J

c U
j j

j

f L C


 , set the optimal solution to the original 

problem as { }C
jP L  with maximal revenue ( ( ))CE R P , it has: 

(1) ( ( )) ( ( ))C UE R P E R P  and (2) 
1

( )
J

C
j

j

L U


 . 

Proof of Lemma 4.2: For (1), since the optimal solution of 
problem 1SP  is a feasible solution of original problem, then the 
revenue of optimal solution of original problem is at least 
larger than that of problem 1SP , then (1) is proved. For (2), we 

can easily deduce that for optimal solution to two problem 1SP  

with different U , it has 1 2( ( )) ( ( ))U UE R P E R P  when 

1 2U U . Therefore, if we assume the optimal solution of 

original problem has
1

( )
J

C
j

j

L U U


  , then it has 

( ( )) ( ( )) ( ( ))C U UE R P E R P E R P  , which gets a 
contradiction that the optimal solution is not better than a 
feasible solution. Then lemma 4.2 is proved. 

Lemma 4.2 means that by solving problem 1SP , we can 

quickly approach optimal solution to the original problem 0SP , 
and then fine tune the placement to get solution closer to 
optimal ones. We then need to solve the problem 1SP : 

Lemma 4.3 In the optimal condition of problem 1SP , all 
partial derivative functions equal: 

1 1 2 2( ) ( ) ... ( )U U U
J Jcdf L cdf L cdf L v    , where 

1

(1 ( ))
I

i
j j

i

v cdf L


   is the optimal variable, and 

1

( ) ( )
I

U i
j j j j

i

cdf L cdf L


  . 

Proof of Lemma 4.3: define ( )j jf L  

as
0

( ) (1 ( ))
jL i

j j jf L cdf n dn  , with its derived function 

is ( ) 1 ( ) ( )i U
j j j j j jf L cdf L cdf L    . Then the solution to 

problem 1SP  in (8) is equal to that of the following problem: 

1 1

max( ( )) . .
J J

j j j
j j

f L s t L U
 

  . The problem is in the form 

of a traditional non-linear programming problem, where the 
optimal condition is all derived function equals, and then 
lemma 4.3 is proved. 

Based on lemma 4.3, we use binary search to narrow the 
scope and find the solution close enough to the global 
budget C . The algorithm is outlined in Figure 1, where in each 
iteration the cost ( c ) is first calculated using the given optimal  

Fig. 1. The algorithm to solve subproblem 1. 

variable v  (line 4-9), then c  is compared with target cost C  
to narrow search scope or terminate algorithm (line 10-17). 

In implementation of algorithm 1 in Figure 1, all input 
functions can be recorded in hash map data structure, and its 
time complexity of querying operation is (1)O . Although 

1( ) ( )U
jcdf    may give a value range instead of single value, we  
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Input: demand distribution 1( ) ( )U
jcdf   , outer 

iteration number 1K , inner iteration number 2K . 

Output: amount of resources placed in each region 

jL . 

Get initial placement (1 )jL j J   using algorithm 

1. 

for( 1 1t1 o k K ){ 

1 1_ / ( )exch cost k C K J . 

    for( 2 2t1 o k K ){ 

        for( o 1 tj J ){ 

            record added revenue to _ [ ]list add j  if 

increase the budget of region j  by _exch cost . 

            record reduced revenue to _ [ ]list red j  if 

reduce the budget of region j  by _exch cost . 

        } 

        sort _list add  in ascending order, find the first 

region 1j  with added revenue _rev add . 

        sort _list red  in descending order, find the first 

region 2j  with reduced revenue _rev red . 

        \If{( _ _rev add rev red )}{ 

            apply the exchange and update 
1j

L  and 
2j

L . 

        } 

    } 

} 
Fig. 2. The final resource scheduling algorithm. 

can choose the lowest value to find the highest lower bound 
CU . 

B. Solution to original problem 

We then investigate problem of how to approach optimal 
solution of 0SP  from the solution of 1SP . But as problem 0SP  
has no global optimal condition, exhausting every local optimal 
solution is of high time complexity. We choose to fine tune the 
solution of 1SP  by exchanging resource between different 
regions. The final algorithm is given in Figure. 2, which is 
called HCRS (Heterogeneous Cost models oriented cloud 
Resource Scheduling algorithm). Where in inner iteration (line 
4-14), we first calculate the added and reduced revenue of 
changing jL  by _exch cost  (line 5-8), then pair and update 

the region with largest adding revenue ( 1j ) and smallest 

reducing revenue ( 2j ) (line 9-13). The out iteration just 

increases _exch cost  and tries inner iteration again. 

V. EXPERIMENTS 

To investigate the effectiveness of HCRS, we evaluate 
HCRS algorithm to compare the effectiveness of HCRS with 
traditional mean-based algorithm. Similar to the experiment 
settings of stochastic demand oriented works [4], we consider 
demands that follow Zipf distribution, i.e., the probability of a 
single request dispatched to region j  is:  



1

e

j J
e

n

j
p

n










  

where 0e   is a real number. 

Without loss of generality, we initialize the expectation of 
i
jD  to be randomized using Poisson distribution with a rate of 

jp  , where   is the expected number of total requests. To 

find the effectiveness of algorithm with low complexity, we set 
low cycle count of 1 10K   and 2 100K  . 

Firstly we compare the effect of mean-based method with 
HCRS under different budgets. In mean-based method, the 
number of resource in region j  is proportional to the mean 
demand, i.e., to solve the following problem: 


1

( ( )) ,
J

c i
j j

j

f rE D C




   

where r  is the same ratio of resource to demand in each region. 

The result is shown in Figure 3. Here we use the cost to 
fulfill mean demand of each region as C , the x -axis means the 
budgets represented using proportion of C , and the y -axis 
means the percent of increased revenue using HCRS upon 
mean-based method. The Zipf parameter is set to 1.0. It is 
shown that HCRS can always outperform mean-based methods 
under different budgets. Furthermore, it is observed that, along 
with the increasing of budget, revenue increasement decreases 
significantly. The reason is that the number of unsatisfied 
demands decrease with more resources, which leads  

Fig. 3. Revenue increase from mean-based method under different budgets. 
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Fig. 4. Revenue increase from mean-based method under different price 
range. 

Fig. 5. Revenue increase from mean-based method under different Zipf 
parameter. 

 

Fig. 6. Revenue increase from mean-based method under different J. 

to the decreasing of room for optimization. Since resources 
cannot be surplus enough in most of real scenarios, HCRS can 
still be used to gain more revenue in common scenarios. 

Secondly we explore to find out how the different pricing 
model in each region affects the revenue. According to the 
pricing model in Amazon EC2, where the price of most 
expensive instance can be nearly two times of that of cheapest 
instance, thus we choose linear pricing model with unit price 
ranges from 1.0-2.0. We also use the cost to fulfill mean 
demand of each region as C , the x -axis means the range of 
unit price among all regions, and the y -axis means the percent 
of increased revenue using HCRS upon mean-based method. 
The Zipf parameter is set to 1.0, and budget is set to 0.5C . The 

result is shown in Figure 4. It can be observed that, along with 
the increasing of price range, revenue increased slowly, which 
perhaps due to the small price range here. Since in realistic 
scenario the price range cannot be very large, that means the 
impact of price difference is small. 

Then we investigate how Zipf parameter affects the revenue. 
We consider a wide range of Zipf with varied values from 0.6 
to 1.4.The result is shown in Figure 5. We can observe that 
along with the increase of Zipf parameter, the revenue 
decreased accordingly. Note that higher Zipf means greater 
popularity difference between different j . Since improving 
result needs more computation, the result indicates that it needs 
more computation to elaborate result for demands with high 
Zipf. 

The number of regions varies a lot in realistic systems, 
ranging from 100 to 1000, which will affect the result of HCRS. 
We test and calculate the revenue increase under different J . 
The result is shown in Figure 6. We can observe an obvious 
improvement of revenue with greater J , which dues to that 
greater J  provides more opportunities for revenue increasing 
in cycles of HCRS algorithm. 

Above all, it is shown in experiment that: 

(1) HCRS is more effective when resource is scarce (i.e., 
fewer budgets), which means HCRS is especially effective for 
situation of resource overload. In another word, HCRS can 
help improve performance without adding more budget in case 
of request burst. 

(2) The effectiveness of HCRS is slightly affected by unit 
price. That means HCRS can adapt to the common price range 
in different cloud platform, thus can be deployed across cloud 
platforms. 

(3) The Zipf parameter has little impact on the effectiveness 
of HCRS, which indicates that HCRS can accommodate 
different demand distribution across regions. 

(4) The number of regions can affect HCRS. It is shown 
that the result of HCRS is improved with more regions, i.e., the 
revenue increase can compensate the increased complexity 
when number of regions increases. 

VI. CONCLUSION 

We propose an efficient stochastic demand oriented cost 
optimization resource placement algorithm (called HCRS). Our 
analysis and the preliminary experiments indicate that with 
lower computation complexity, HCRS can increase revenue by 
up to 42% when compared with mean demand based algorithm. 
HCRS can alleviate the situation of resource overload without 
increasing budget, and is expected to accommodate demands 
with different demand distribution across regions. 

Our future works may include: more effective resource 
adjust algorithm to improve the algorithm result and efficiency; 
more sophisticated scenarios with multiple types of resources. 
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