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Abstract—An effective flocking algorithm for multi-agent 

systems is presented. A type potential function is introduced for 

avoiding agents’ inner collisions, and makes them formulate an -

lattice pattern. The potential function creates a virtual force is 

only effective when the distance between two agents is beyond a 

safe region. With the presented flocking algorithm, agents match 

the same speed, and keep a certain distance from each other. 

Simulation results verify the effectiveness of the proposed 

algorithm. 
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I.  INTRODUCTION 

Multi-agent navigation is a field that has gained increasing 
attention both in the robotics and the control communities, due 
to the need for autonomous control of more than one mobile 
robotic agent in the same workspace. The main feature of 
formation control is the cooperative nature of the equilibrium 
of the system. Agents must converge to a desired configuration 
encoded by the inter agent relative positions. Among the 
various specifications that the control design aims to impose on 
the multi-agent team, formation convergence and achievement 
of flocking behavior are two objectives that have been pursued 
extensively in the last few years.  

Flocking is a phenomenon in which a number of agents 
move together and interact with each other [1-3]. Flocking 
control for multiple mobile agents has been studied in recent 
years [5-8], and it is designed based on three basic flocking 
rules proposed by Reynolds [6]: flock centering, collision 
avoidance, and velocity matching. Flocking behavior involves 
convergence of the velocity vectors and orientations of the 
agents to a common value at steady state [9, 10]. 

In this paper, the distributed flocking problem for multi-
agent systems is studied, and a potential function is proposed. 
In the algorithm we suppose that each agent has interactions 
with its mates within a desired bounded workspace. The main 
contributions in this paper include proposed flocking algorithm 
and potential function. 

The rest of this paper is organized as follows. In the next 
section we present the preliminaries of flocking control and 
problem formulation. Section 3 describes the design of 
potential function. Section 4 proposed an effective flocking 

algorithm. Section 5 shows the simulation results. Finally, 
Section 6 concludes this paper. 

II. PROBLEM STATEMENT 

In [6], it is proposed one kind Geometry of flocking 
behavior for multi-agent system. A dynamic system with n  
followers and a virtual leader operating in the same Euclidean 

space is considered. Let 
2( , )i iq p R  denote the position and 

velocity of agent {1,2,..., }i n , respectively. In terms of 

inter-agent distances ijd , system geometric object can be 

described as solutions of the following set of algebraic 
constraints: 

, ( , 1, 2,3..., )ij j id d q q i j n= = - =  (1) 

We assume that the motions of the followers are dependent 
on other neighbors. For the range constraints of sensors, agents 
cannot always know the information with respect to all other 
agents. It is known that during the movement of agents, the 
relative distance between them may change; hence the 
neighbors of each agent also change. Therefore, we can define 

a neighborhood set of agent i  as follows: 

{ }:i j iN j v q q r= Î - <  (2) 

where r  is the maximal range (active range) of the interaction 

between two agents, and ×  is Euclidean distance.  

Considering the interactions between agents are mutual. 
Therefore, the interrelationships between them can be 
conveniently described by an undirected graph to model the 
interaction topology among agents, which consists of a vertex 
set 

( ) { : }i nV G v i l= Î  (3) 

and an edge set 
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{ }( ) , : , ( )i j i jG v v v v V Ge Ì < > Î  (4) 

The adjacency matrix ( ) n n

q ijA a q R      of the 

undirected graph is a matrix with elements satisfying the 

properties that if ,i jv v< > Ì e , ( ) 0ija q  ; otherwise 

0ija  .  

If the adjacent agents can maintain a fixed distance, we find 
it convenient to define these solutions as lattice-type objects. 

Definition 1 (  -Lattice) [6]: An  -lattice is a 

configuration satisfying the set of constraints r . And k r d  

as the scale and ratio of the lattice, respectively. Figure 1 shows 
an  -lattice like pattern. 

 

 
Figure 1:  An   -lattice 

 

Furthermore, define iu  is the control input of agent i , in 

other words, iu  can also be regarded as the input command of 

agent i . Then kinematic model of each follower is described 

by the following equation: 

1,2, , .

i i

i i

q p

p u i n




   ，
 (5) 

The flocking control law in [6] controls all agents to form 
an  -lattice configuration. In the system, a virtual force used 
to align agents to stay close to nearby flock mates, and the 
different ones will separate from each other. The virtual force 

component if


, consists of a gradient-based component, is 

used to regulate the potentials (repulsive or attractive forces), 

( )
i

i z j i ij

j N

f q q n 


   (6) 

where ijn  is vector from i  to j , and ( )z  is  positive 

defined potential function. 

III. POTENTIAL FUNCTION DESIGN 

Each agent can only have interactions with those agents 
located within a cyclic neighborhood with in specific radius r . 

In this section, we introduce artificial potential field, and define 
the virtual force associated with the distance. A potential 
function is a function about adjacent agents’ distances and 
convergence at a certain preset distance. It is also a bounded 
function. Its value gets larger accompany with the neighbor 
agents getting too far or too close. The virtual force function 
could be in different forms, it is designed as following 
principles: 

 Potential function is vector function of agents’ 
distances. The total force is the vector sum of its 
neighbors’. 

 The functions perform repulsion when the distance 
between agents gets shorter. Otherwise, they perform 
collection when the distance between two agents gets 
longer. 

 The potential function has a balance distance point 
br , 

and has safe distance threshold  . That means the 

virtual force between two agents is zero when the their 

distance falls into the range  ,b br r   . 

Based on the above principles, its mathematical expression 
is written as: 

2

2

2
,   0<

( ) 0,                         

2
,

( )

j i

j i

r
ji ji b

N ji

zi ji b ji b

r
ji ji b

N d ji

k
k r r

r

r r r r

k
k r r

r r


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





  
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

    


 
      





n

n   

 (7) 

where zi  is the sum of virtual force between i th agent and its 

neighbors, jir  represents the distance between agent j  and i , 

which equals to j iq q , rk  and k  denote the adjustment 

parameter of potential function, and jin  is the vector along the 

line connecting jq  to iq , which can be calculated as: 

2

( )

1

j i

ji

j i

q q
n

q q




 

 (8) 

where   is an adjustment parameter. 
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IV. FLOCKING ALGORITHM 

In this section we present the distributed flocking algorithm 
in free-space. Agents with the same leader attempt to match 
velocity with nearby flock mates, but agents with different 
leaders do not. Now, we write the proposed distributed 
flocking control law as: 

1 2( ) ( ) ( )
i i i

i zi ij ij ij i j ij i j

j N j N j N

u r n k a q q k a p p
  

        (9) 

Theorem 1. Consider a system of n  mobile agents with 
dynamics (5). Assume that the initial velocities mismatch and 
inertias of a group of agents are limited, and system has the 

initial energy 0( (0), (0))H q p . The dynamic system (5) under 

the control input (9), the following statements hold: 

 Agents form cohesive flocks moving together, The 
distance between any agent and its corresponding 
virtual leader is not larger than r ; 

 Agents form a flocking in a local minimum, and agents 
with the agents match the same velocity; 

 No agent will collide with another. 

Proof. The proof procedure is familiar with author’s 
another paper in [11], so it is omitted. 

V. SIMULATION 

In this section, a simulation example is given to illustrate 
the theoretical results. The parameters used in this simulation 
are specified as follows. 

Consider the multi-agent system (5) with 50 agents. The 

initial interactions between them are active as jid r . We 

choose the range constraints of sensors 15r  , distance 

threshold 4.5  ,  and 1.3k  . Figure 2 illustrates the 

virtual force function we selected. 
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Figure 2: potential function 

 
The simulation results are shown as Figure 3(a)-(h), all the 

agents begin with different initial speeds at time 0t  . Then 

their speeds converge to the same with the time lapse, and 
finally reach consensus. Figure 3 (a)-(h) illustrate the 50 agents 
get  -lattice under the flocking protocol. The gents swarm 

together from each other and hold safe distances between them 
all the time under the given virtual force. 
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Figure 3: flocking simulation results 

VI. CONCLUSION 

This paper investigates the flocking problem of multi-agent 
systems led by multi-leader with an undirected topology. Based 
only on the three classical assumptions for flocking systems, 
we propose a practical control protocol that pins only a fraction 
of the agents in the system and allows the agents to follow the 
leaders when their acceleration is known. Some necessary and 
sufficient conditions are obtained for the particular case and the 
paper concludes by applying the theory to some simulated 
problems and showing their results. 

ACKNOWLEDGMENT 

This work supported by the National Natural Science 
Foundation of China (No. 51475278), Shandong Science and 
Technology Development Project (No. 2014GGB01483 and 

173



2013GNC11203), Shandong Provincial Agricultural 
Equipment Research and Innovation Projects (Grant No. 
2015YB201), and the Youth Science and Technology 
Innovation Fund Of Shandong Agricultural University. 

 

REFERENCES 

 
[1] Y. Dong, J. Huang, “Flocking with connectivity preservation of multiple 

double integrator systems subject to external disturbances by a 
distributed control law”. Automatica, Vol. 55(3), pp. 197-203, 2015. 

[2] J. N. Jia, L. Wang, “Experimental implementation of distributed 
flocking algorithm for multiple robotic fish”. Control Engineering 
Practice, Vol. 30(5), pp. 1-11, 2014. 

[3] H. Levine, W. J. Rappel, I. Cohen, “Self-organization in systems of self-
propelled particles”. Phys. Review. E, Vol. 63, No. 017101, 2000. 

[4] H. Su, X. Wang, Z. Lin, “Flocking of multi–agents with a virtual 
leader”. IEEE Transactions on Automatic Control, Vol. 54(2), pp. 293–
307, 2009. 

[5] I. D. Couzin, J. Krause, R. James, “Collective memory and spatial 
sorting in animal groups”. J. Theor.Biol, Vol. l, pp. 218, 2002. 

[6] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms 
and theory”. IEEE Transactions on Automatic Control, Vol. 51(3), 
pp.401–420, 2004. 

[7] C. Reynolds, “Flocks, birds, and schools: A distributed behavioral 
model”. Computer Graphics. ACM SIGGRAPH ’87 Conference 
Proceedings, Anaheim, California, Vol. 21(4), pp. 25–34, 1987. 

[8] M. C. Fan, H. T. Zhang, M. M. Wang, “Bipartite flocking for multi-
agent systems”. Communications in Nonlinear Science and Numerical 
Simulation, Vol. 19(9), pp. 3312-3322, 2014. 

[9] B. Sharma, J. Vanualailai, U. Chand, “Flocking of Multi-agents in 
Constrained Environments”. European Journal of Pure and Applied 
Mathematics, Vol. 2, pp. 401–425, 2009. 

[10] X. Q. Lu, F. Austin, S. H. Chen, “Flocking in multi-agent systems with 
active virtual leader and time-varying delays coupling”. Commun 
Nonlinear Sci Numer Simulat, Vol. 16, pp.1014–1026, 2011. 

[11] Y. Li, G. Y. Tang, X. X. Yang, “Collision-free consensus in second-
order multi-agent dynamical systems”. Control Conference, China, pp. 
6245 – 6249, 2012. 

 

174




